

# INDIAN INSTITUTE OF MANAGEMENT CALCUTTA 

## WORKING PAPER SERIES

WPS No. 626/ August 2008

Capacity Choice under Demand Uncertainty: Effects of Production Postponement and Product Flexibility

> by

## Dipankar Bose

Doctoral student, IIM Calcutta, Diamond Harbour Road, Joka P.O., Kolkata 700 104, India
\&

## Ashis K. Chatterjee

Professor, IIM Calcutta, Diamond Harbour Road, Joka P.O., Kolkata 700104 India

## Capacity Choice under Demand Uncertainty: Effects of Production Postponement and Product Flexibility


#### Abstract

This paper deals with the optimal capacity choice under demand uncertainty. A single period two product model with stochastic demand has been developed to determine the optimal capacity level that maximizes the expected profit. Dedicated plant with no production postponement strategy has been considered as base case. The model has been extended to examine the effect of production postponement and product flexibility on optimal capacity decision. While it is apparent that the cost of over-production has been eliminated under production postponement, the other major benefit depends on whether the products have been produced in a single product flexible plant rather than dedicated plants. It has been shown that investment in flexible plant makes sense only if the possibility of production postponement exists. The model has been extended to multi-product situation with correlation in demand. Simulated data based optimization procedure has been applied to solve the multi-product problem as the same is analytically intractable. The concept of PdPPF Index has been introduced to observe the effect of production postponement on product flexible plant. Finally the effects of imposing service level objective on firm 's optimal profit and capacity have been studied for both dedicated and flexible plant strategies.


Keywords: Demand Uncertainty; Capacity Planning; Production Postponement; Product Flexibility; Stochastic Programming; Service Level

## 1. Introduction:

Up to the middle of the last century, the paradigm of manufacturing had an emphasis on the mass production, mass markets and standard design. The existence of national market and absence of foreign competitors helped firms to act in the seller's market. Over the years the complexity in business environment has increased due to globalization and rapid technological advances. The changing nature of global business has led to highly competitive markets. Increased competition has changed the nature of demand in the market place both in terms of product variety as well as uncertainty associated with the product demands. This has increased challenges in all facets of manufacturing. Capacity planning in such scenario assumes complexity as one has to deal with the trade off between the cost of investment in excess capacity and the opportunity loss from not meeting the demand due to capacity constraint.

In the context of production decision under capacity planning objective, two distinct situations may arise: (a) the firm has to decide on capacity as well as the production quantity before the demand has been realized, (b) while capacity needs to be decided a priori, the firm can decide on production after the demand is realized. The above two have been normally referred to as "No Postponement" and "Production Postponement" respectively. While it has been apparent that the cost of over-production has been eliminated under production postponement, the other major benefit depends on whether the products have been produced in a single product flexible plant rather than dedicated plants. Yang et al. (2004) have argued that both flexibility and postponement are "reactive adaption behaviors" as they deal with the consequences of uncertainty rather than attacking the causes of uncertainty.
Product flexibility has been recognized as an important tool for coping with demand uncertainties. However, investment and management issues regarding product flexibility have been recently incorporated in operation management models (Bish and Wang, 2004). It is intuitive that in the presence of production postponement, the firm stands to gain from product flexibility by exploiting the differences in the realized demands of the individual products. The capacity decision being taken considering aggregate demand of all the products; at the production stage potential benefit exists in terms of utilizing the idle capacity due to the below average realized demand for one product by the higher than average realized demand for another product. On the other hand, as product flexibility allows production of different products in the same plant, it would typically involve higher marginal cost of investment compared to dedicated plant. This motivates to look at the economics of dedicated plants versus product flexible plant in the context of capacity planning decision. For this purpose, a single period multi-product model with stochastic demand has been developed to determine the optimal capacity level that maximizes the expected profit. Dedicated plant with no production postponement strategy has been considered as base case. This model is similar to the classical newsboy model with capacity as decision variable. The model has been extended to consider (a) Dedicated plant with production postponement and (b) Flexible plant with production postponement. The base model as well as (a) above, are essentially extension of Mieghem and Dada (1999) for multi product case. In literature, the extensions (a) and (b) have been modeled as two stage stochastic programming problem; where, in the first stage the firm decides the capacity that maximizes the
expected profit. In the second stage, demands have been realized and the firm decides on production quantity.

In this paper the stochastic programming problem has been solved to determine the capacity level which maximizes the expected profit. However, in case of multiple products following correlated multivariate demand distribution, the problem becomes analytically intractable. Because of the analytical intractability, most of the literatures have come out with characterization of optimal solution with possibilities and dominant conditions. (Some of them have been discussed in literature review.) To make the problem analytically tractable, for threeproduct case, where demands follow correlated multivariate distribution, finite discretization of the random data allows writing the expectation in the form of summation and helps to solve the stochastic problem.

The rest of the paper is as follows. Relevant literature survey has been done in section 2. In section 3, the models for expected profit maximization and opportunity loss minimization under postponement and product flexibility have been introduced and shown that simulated data based optimization gives very good approximation of the analytical results in case of two-product example. In section 4, analysis has been done for multi product case. The results and insights of the analyses have also been shown in this section. In section 5, service level constraint has been added to observe its effect on various strategies. Section 6 concludes the paper.

## 2. Literature Survey:

The choice of dedicated and flexible plant combination for capacity planning under demand uncertainty has been considered by Fine and Freund (1990), followed by Meighem (1998) and Bish and Wang (2004). Eppen et al (1989) have considered capacity planning problem under risk and presented a mixed integer programming model based on a scenario planning approach. Peronne et al (2002) have tried to capture the economic advantage of flexible resource over the dedicated one.

Fine and Freund (1990) have worked with n different product families which can be produced in n dedicated plants or in a single flexible plant. K possible states of demand with known probability have been assumed. The market demand has been realized by the firm only after investment in capacity for the combination of dedicated and flexible plant. The capacity
acquisition cost, revenue and production costs has been known. With the objective of profit maximization, followings have been included in their findings:
a) There is no guarantee of getting a unique optimal solution if the total no of products is greater than or equal to three. This has been shown by a counter example.
b) Shadow values at optimality for dedicated and flexible capacity constraint have been obtained. They have shown that, for a particular state of market demand, shadow value of flexible capacity is equal to the maximum of shadow values of dedicated capacities over all products. From that they have also derived the profitable condition for the investment in flexible capacity.
c) With the increase in dedicated capacity cost, dedicated capacity decreases, flexible capacity increases and vice-versa. Decrease in any type of capacity cost profit increases.
d) For downward sloping demand curves, in case of two products they have shown the relationship between the capacity, capacity cost and optimal profit for correlated demand scenario.

Mieghem (1998) has extended the works of Fine and Freund (1990) with same two product example with product one contribution is greater than that of product two. The benefits of product flexibility under uncertainty has been observed for the role of price and cost mix differentials in addition to demand correlation. He has expressed optimality condition in terms of dual variables. He has also highlighted the role of investment cost for choosing among possible investment strategies. For this he has defined two threshold values for flexible capacity cost. Similar to Fine and Freund (1990) he has observed substitution effect of marginal cost change on capacity. Similarly the investment in corresponding dedicated capacity has been increased with higher price. Increase in price differential increases flexible capacity and decreases dedicated capacity of less profitable product. He has proposed capacity investment strategy for perfectly positively correlated and perfectly negatively correlated demand under different conditions. Contradicting Fine and Freund (1990) he has shown that investment in flexible plant can give better benefit even in case of perfectly positively correlated demand if there is price difference between the products.

In line with the above literatures, Bish and Wang (2004) have also considered two-product case considering continuous distribution which makes it different from Fine and Freund (1990) and price dependent demand which makes it different from Mieghem (1998). The problem is two
stage stochastic programming in nature. They have divided demand space into six regions and for each region they have derived optimal closed form expression for optimal profit of stage two as a function of capacity vector. For stage one problem they have derived necessary and sufficient condition for optimal profit. They have also derived necessary and sufficient conditions for investment in flexible capacity. They have proposed capacity investment strategies under perfectly correlated demand conditions for different parameter values.

Eppen et al (1989) have considered a multiproduct, multiplant, multiperiod capacity planning problem. Three scenarios (or states of nature) have been specified for each year. They have argued that variance is not a good measure of risk in this environment and suggested an alternative based on expected downside risk. Their works have been based on following assumptions: 1) a retooling decision determines which products can be produced at a site as well as other cost and capacity parameters; 2) there is a changeover cost for shutting down a plant as well as for retooling it; 3) the demand has been realized before the production decision has been made and no inventory has been carried from period to period; 4) production levels can be altered within the time period in order to satisfy as closely as possible the demand that has been actually experienced; 5) the probability of a scenario occurring in a year is independent of earlier outcomes and the capacity of a plant depends upon the configuration chosen and at any period any plant should be under one and only configuration. Interest rate has been taken as 0.1 . They have added a constraint for expected downside risk to the original problem of the form EDR (0) $<7.0$, where 0 is the target value of desired profit. Expected profit and EDR has been calculated from histogram generated using 15 cases ( 3 scenarios and 5 periods).

Peronne et al (2002) have assumed the following for their theoretical model: 1) demands follow uniform distribution, 2) price depends on mean demand only and 3) the variable cost is same for both dedicated and flexible plants but investment costs are different. System wise profit has been maximized by maximizing each products profit. Investment cost, which has been expressed in terms of unit time multiplied by the service time of the product, in flexible plant has been depended on scope economy factors $\alpha$ and $\beta$. According to them, flexibility has been most effective when products with longest service times have been performed in most expensive dedicated resource. The cumulative scope economy factor $\alpha$ for flexible machine is (investment cost of flexible machine)/(investment cost of dedicated machine capable of producing the products that have been produced in flexible plant). This flexible investment cost is less than sum
of the total dedicated cost and greater than any of the dedicated cost. Similarly, service time scope economy factor $\beta$ for any product is (service time in flexible machine)/(total service time in dedicated machine capable of producing the products that have produced in flexible plant). The difference between flexible resource and dedicated resource has been presented in the form of hyperbola i.e. $\alpha \beta=$ constant.

By simulating truncated normal distribution in 10-product-10-plant case Jordan and Graves (1995) have shown that limited flexibility with single chain captures more than $90 \%$ of the benefit of total flexibility in terms of expected sales and capacity utilization. According to them, benefit of flexibility has been affected by two factors; demand correlation and total capacity relative to expected total demand. Negatively correlated products have been required to be in the same chain, but might not be in the same plant. If total capacity deviates far from the total expected demand, flexibility has no value. They have argued that there can not be single optimal plan; rather many near optimal plans exist. The product-plant links have been added based on the following rules: 1) try to equalize the no of plants (measure in total units of capacity) to which each product in the chain has been directly connected, 2) try to equalize the no of products (measure in total units of expected demand) to which each plant in the chain has been directly connected and 3) create circuit that encompasses as many plants and products as possible.

Fine and Freund (1990), Meighem (1998) and Bish and Wang (2004) have examined two product situation and analytically studied characteristics of the optimal solution for two product case. In contrast to them, simulated data based models, developed in this paper, have been capable of finding optimal profit and capacity under given parameter values for multiproduct case with complete characterization of demand correlation into the model. However separate values for marginal cost of capacity for dedicated and flexible plants have not been considered. Also, partial product flexibility discussed by Jordan and Graves (1995), has been considered as out of scope for this paper.

## 3. Two Product Cases:

Consider a manufacturer producing two products wants to set capacity level(s) before realizing the demands. Also consider that, after demand realization, there is no inventory carry over or backorder which can affect next period's planning. Remaining inventory has been sold at
discount, called salvage value. Take $D_{i}$ as demand and $d_{i}$ as the realized demand for the product i. The price of product $i$ is $P_{i}$ per unit, cost is $C_{i}$ per unit and salvage value is $S_{i}$ per unit. The firm can decide the production quantity $\mathrm{Q}_{\mathrm{i}}$ before demand for product i has been realized or, it can wait till demand realization so that no over-production happens. Similarly firm can go for two dedicated plants with capacity $\mathrm{K}_{\mathrm{i}}$ or single flexible plant to produce the products with capacity K. In the following subsections the possible cases has been discussed. For simplicity, subscript i have been omitted in case of dedicated plant strategies.

Assume that the manufacturer starts with no initial resource(s) and incurs investment cost $C(K)$. For simplicity, also assume that $C(K)$ is linear in $K$, i.e., $C(K)=C_{K} K$, where $C_{K}$ depends on whether the firm is using dedicated technology or flexible technology. It has been considered that same amount of capacity has been required to produce one unit of each product, so capacity has been expressed as the number of product units that can be produced. Moreover, there is no cost associated with producing away from installed capacity. These types of assumptions are common in literature.

### 3.1. Analytical Findings for Two Products:

### 3.1.1. Dedicated Plant, No Production Postponement:

As there is no production postponement the firm needs to decide both the capacity and production before the demand realization. So there is no point in invest in capacity higher than the production level. In other words, in case of no production postponement $\mathrm{K}=\mathrm{Q}$ Possible two situations have been described below with the help of under production and over production costs:

| Situation | Profit | Opportunity loss |
| :---: | :--- | :--- |
| $\mathrm{D}>\mathrm{K}$ | $\left(\mathrm{P}-\mathrm{C}-\mathrm{C}_{\mathrm{K}}\right) \mathrm{K}$ | $\left(\mathrm{P}-\mathrm{C}-\mathrm{C}_{\mathrm{K}}\right)(\mathrm{D}-\mathrm{K})$ |
| $\mathrm{D} \leq \mathrm{K}$ | $\left[\left(\mathrm{P}-\mathrm{C}-\mathrm{C}_{\mathrm{K}}\right)-\left(\mathrm{S}-\mathrm{C}-\mathrm{C}_{\mathrm{K}}\right)\right] \mathrm{D}+\left(\mathrm{S}-\mathrm{C}-\mathrm{C}_{\mathrm{K}}\right) \mathrm{K}$ | $\left(\mathrm{S}-\mathrm{C}-\mathrm{C}_{\mathrm{K}}\right)(\mathrm{D}-\mathrm{K})$ |

So expected profit $=\mathrm{E}(\Pi)$
$=\int_{\mathrm{K}}^{\infty}\left[\left(\mathrm{P}-\mathrm{C}-\mathrm{C}_{\mathrm{K}}\right) \mathrm{K}\right] \mathrm{f}(\mathrm{d}) \mathrm{dd}+\int_{0}^{\mathrm{K}}\left[\left[\left(\mathrm{P}-\mathrm{C}-\mathrm{C}_{\mathrm{K}}\right)-\left(\mathrm{S}-\mathrm{C}-\mathrm{C}_{\mathrm{K}}\right)\right] \mathrm{d}+\left(\mathrm{S}-\mathrm{C}-\mathrm{C}_{\mathrm{K}}\right) \mathrm{K}\right] \mathrm{f}(\mathrm{d}) \mathrm{dd}$
$=\left(P-C-C_{K}\right) K-(P-S) \int_{0}^{K}[(K-d)] f(d) d d$
Similarly expected opportunity loss $=\mathrm{E}(\mathrm{O})$
$=\int_{K}^{\infty}\left[\left(P-C-C_{K}\right)(d-K)\right] f(d) d d+\int_{0}^{K}\left[\left(S-C-C_{K}\right)(D-K)\right] f(d) d d$

Now, $\frac{\mathrm{d}}{\mathrm{dK}} \int_{0}^{\mathrm{K}} \mathrm{df}(\mathrm{d}) \mathrm{dd}=\operatorname{Kf}(\mathrm{K})$
$\frac{\partial \mathrm{E}(\mathrm{H})}{\partial \mathrm{K}}=\left(\mathrm{P}-\mathrm{C}-\mathrm{C}_{\mathrm{K}}\right)-(\mathrm{P}-\mathrm{S})[\mathrm{F}(\mathrm{K})+\mathrm{Kf}(\mathrm{K})-\mathrm{Kf}(\mathrm{K})]=\left(\mathrm{P}-\mathrm{C}-\mathrm{C}_{\mathrm{K}}\right)-(\mathrm{P}-\mathrm{S}) \mathrm{F}(\mathrm{K})$
Hence, $F(K)=\frac{\left(P-C-C_{K}\right)}{(P-S)}$

### 3.1.2. Dedicated Plant, Production Postponement:

In case of production postponement, production has been done only after demand realization. Hence there is no over production cost and $\mathrm{Q}=\operatorname{Min}(\mathrm{D}, \mathrm{K})$. However, there has been a need to consider overcapacity cost in this case. There can be two situations as described below:

| Situation | Profit | Opportunity loss |
| :---: | :---: | :---: |
| $\mathrm{D}>K$ | $\left(\mathrm{P}-\mathrm{C}-\mathrm{C}_{\mathrm{K}}\right) \mathrm{K}$ | $\left(\mathrm{P}-\mathrm{C}-\mathrm{C}_{\mathrm{K}}\right)(\mathrm{D}-\mathrm{K})$ |
| $\mathrm{D} \leq \mathrm{K}$ | $\left(\mathrm{P}-\mathrm{C}-\mathrm{C}_{\mathrm{K}}\right) \mathrm{D}-\mathrm{C}_{\mathrm{K}}(\mathrm{K}-\mathrm{D})$ | $\mathrm{C}_{\mathrm{K}}(\mathrm{K}-\mathrm{D})$ |

So expected profit
$=E(\Pi)=\int_{K}^{\infty}\left[\left(P-C-C_{K}\right) K\right] f(d) d d+\int_{0}^{K}\left[\left(P-C-C_{K}\right) d-C_{K}(K-D)\right] f(d) d d$
$=\left(P-C-C_{K}\right) K-(P-C) \int_{0}^{K}[(K-d)] f(d) d d$
Similarly expected opportunity loss
$=E(O)=\int_{K}^{\infty}\left[\left(P-C-C_{K}\right)(d-K)\right] f(d) d d-\int_{0}^{K}\left[C_{K}(K-D)\right] f(d) d d$
Hence, $\mathrm{F}(\mathrm{K})=\frac{\left(\mathrm{P}-\mathrm{C}-\mathrm{C}_{\mathrm{K}}\right)}{(\mathrm{P}-\mathrm{C})}$

For the strategies discussed above, following propositions have been developed.
Proposition 1: Production postponement always gives higher optimal capacity and profit for dedicated plant.
Proof: As $C>S,(P-C)<(P-S)$. Hence, $F(K)$ in eq. (4) $>F(K)$ in eq. (2), where, $F($.$) is c.d.f.$ of the distribution and $\mathrm{F}($.$) increases monotonically in \mathrm{K}$.
Again $(P-C)<(P-S)$ implies E( $\Pi$ )in eq. (3) $>\mathrm{E}(\Pi)$ in eq. (1).
Proposition 2: For normally distributed demand, in absence of production postponement, optimal capacity increases with the increase in variance as long as $\frac{\left(P-C-C_{K}\right)}{(P-S)} \geq 0.5$, else optimal capacity decreases with the increase in variance.

Proof: Consider demand follows normal distribution with mean $\mu$ and standard deviation $\sigma$. Then, $\mathrm{F}(\mathrm{K})=\Phi\left(\frac{\mathrm{K}-\mu}{\sigma}\right)$.

From eq. (2), $\mathrm{K}=\mu+\sigma \Phi^{-1}\left[\frac{\left(\mathrm{P}-\mathrm{C}-\mathrm{C}_{\mathrm{K}}\right)}{(\mathrm{P}-\mathrm{S})}\right]$.
For the rest of this sub-section proofs have been done taking $\frac{\left(\mathrm{P}-\mathrm{C}-\mathrm{C}_{\mathrm{K}}\right)}{(\mathrm{P}-\mathrm{C})} \geq 0.5$ for both the products.

Proposition 3: For normally distributed demand, optimal profit decreases with the increase in variance.

Proof: $\int_{0}^{K}[(K-d)] f(d) d d=\int_{0}^{K}[(K-d)] \frac{1}{\sigma \sqrt{2 \Pi}} e^{-\frac{1}{2}\left(\frac{(-\mu}{\sigma}\right)^{2}} d d=(K-\mu) F(K)+\sigma^{2}\{f(K)-f(0)\}$.
With increase in $\sigma$ this part increases, which in turn reduces $\mathrm{E}(\Pi)$ in eq. (1) and eq. (3).

### 3.1.3. Product flexible Plant, No Production Postponement:

When there is no production postponement, it has been shown that there is no added benefit from being product flexible. On the other hand, the investment required might be more for achieving product flexibility. Take total capacity $=K$, where $K=Q_{1}+Q_{2}$. Below possible situations and the profit values corresponding to those situations have been presented.

| Situation | Profit |
| :--- | :--- |
| $\mathrm{D}_{1}>\mathrm{Q}_{1}, \mathrm{D}_{2}>\mathrm{K}-\mathrm{Q}_{1}$ | $\left(\mathrm{P}_{1}-\mathrm{C}_{1}-\mathrm{C}_{\mathrm{K}}\right) \mathrm{Q}_{1}+\left(\mathrm{P}_{2}-\mathrm{C}_{2}-\mathrm{C}_{\mathrm{K}}\right)\left(\mathrm{K}-\mathrm{Q}_{1}\right)$ |
| $\mathrm{D}_{1}>\mathrm{Q}_{1}, \mathrm{D}_{2} \leq \mathrm{K}-\mathrm{Q}_{1}$ | $\left(\mathrm{P}_{1}-\mathrm{C}_{1}-\mathrm{C}_{\mathrm{K}}\right) \mathrm{Q}_{1}+\left(\mathrm{P}_{2}-\mathrm{C}_{2}-\mathrm{C}_{\mathrm{K}}\right) \mathrm{D}_{2}+\left(\mathrm{S}_{2}-\mathrm{C}_{2}-\mathrm{C}_{\mathrm{K}}\right)\left(\mathrm{K}-\mathrm{Q}_{1}-\mathrm{D}_{2}\right)$ |
| $\mathrm{D}_{1} \leq \mathrm{Q}_{1}, \mathrm{D}_{2}>\mathrm{K}-\mathrm{Q}_{1}$ | $\left(\mathrm{P}_{1}-\mathrm{C}_{1}-\mathrm{C}_{\mathrm{K}}\right) \mathrm{D}_{1}+\left(\mathrm{S}_{1}-\mathrm{C}_{1}-\mathrm{C}_{\mathrm{K}}\right)\left(\mathrm{Q}_{1}-\mathrm{D}_{1}\right)+\left(\mathrm{P}_{2}-\mathrm{C}_{2}-\mathrm{C}_{\mathrm{K}}\right)\left(\mathrm{K}-\mathrm{Q}_{1}\right)$ |
| $\mathrm{D}_{1} \leq \mathrm{Q}_{1}, \mathrm{D}_{2} \leq \mathrm{K}-\mathrm{Q}_{1}$ | $\left(\mathrm{P}_{1}-\mathrm{C}_{1}-\mathrm{C}_{\mathrm{K}}\right) \mathrm{D}_{1}+\left(\mathrm{S}_{1}-\mathrm{C}_{1}-\mathrm{C}_{\mathrm{K}}\right)\left(\mathrm{Q}_{1}-\mathrm{D}_{1}\right)+\left(\mathrm{P}_{2}-\mathrm{C}_{2}-\mathrm{C}_{\mathrm{K}}\right) \mathrm{D}_{2}+\left(\mathrm{S}_{2}-\mathrm{C}_{2}-\mathrm{C}_{\mathrm{K}}\right)\left(\mathrm{K}-\mathrm{Q}_{1}-\mathrm{D}_{2}\right)$ |

Hence, $\mathrm{E}(\Pi)=\int_{\mathrm{K}-\mathrm{Q}_{1}}^{\infty} \int_{\mathrm{Q}_{1}}^{\infty}\left[\left(\mathrm{P}_{1}-\mathrm{C}_{1}\right) \mathrm{Q}_{1}+\left(\mathrm{P}_{2}-\mathrm{C}_{2}\right)\left(\mathrm{K}-\mathrm{Q}_{1}\right)\right] \mathrm{f}\left(\mathrm{d}_{1}, \mathrm{~d}_{2}\right) \mathrm{dd}_{1} \mathrm{dd}_{2}$
$+\int_{0}^{\mathrm{K}-\mathrm{Q}_{1}} \int_{\mathrm{Q}_{1}}^{\infty}\left[\left(\mathrm{P}_{1}-\mathrm{C}_{1}\right) \mathrm{Q}_{1}+\left(\mathrm{P}_{2}-\mathrm{C}_{2}\right) \mathrm{d}_{2}+\left(\mathrm{S}_{2}-\mathrm{C}_{2}\right)\left(\mathrm{K}-\mathrm{Q}_{1}-\mathrm{d}_{2}\right)\right] \mathrm{f}\left(\mathrm{d}_{1}, \mathrm{~d}_{2}\right) \mathrm{dd}_{1} \mathrm{dd}_{2}$
$+\int_{\mathrm{K}-\mathrm{Q}_{1}}^{\infty} \int_{0}^{\mathrm{Q}_{1}}\left[\left(\mathrm{P}_{1}-\mathrm{C}_{1}\right) \mathrm{d}_{1}+\left(\mathrm{S}_{1}-\mathrm{C}_{1}\right)\left(\mathrm{Q}_{1}-\mathrm{d}_{1}\right)+\left(\mathrm{P}_{2}-\mathrm{C}_{2}\right)\left(\mathrm{K}-\mathrm{Q}_{1}\right)\right] \mathrm{f}\left(\mathrm{d}_{1}, \mathrm{~d}_{2}\right) \mathrm{dd}_{1} \mathrm{dd}_{2}$
$+\int_{0}^{\mathrm{K}-\mathrm{Q}_{1}} \int_{0}^{\mathrm{Q}_{1}}\left[\left(\mathrm{P}_{1}-\mathrm{C}_{1}\right) \mathrm{d}_{1}+\left(\mathrm{S}_{1}-\mathrm{C}_{1}\right)\left(\mathrm{Q}_{1}-\mathrm{d}_{1}\right)+\left(\mathrm{P}_{2}-\mathrm{C}_{2}\right) \mathrm{d}_{2}+\left(\mathrm{S}_{2}-\mathrm{C}_{2}\right)\left(\mathrm{K}-\mathrm{Q}_{1}-\mathrm{d}_{2}\right)\right] \mathrm{f}\left(\mathrm{d}_{1}, \mathrm{~d}_{2}\right) \mathrm{dd}_{1} \mathrm{dd}_{2}-\mathrm{C}_{\mathrm{K}} \mathrm{K}$
$\qquad$

Proposition 4: For independent demands, flexibility does not generate any extra profit compared to corresponding dedicated plants, as long as productions have not been postponed.

Proof: Considering demands are independent, i.e. $f\left(d_{1}, d_{2}\right)=f\left(d_{1}\right) f\left(d_{2}\right)$, the expression for expected profit works out as,
$\mathrm{E}(\Pi)=\left(\mathrm{P}_{1}-\mathrm{C}_{1}-\mathrm{C}_{\mathrm{K}}\right) \mathrm{Q}_{1}+\left(\mathrm{P}_{2}-\mathrm{C}_{2}-\mathrm{C}_{\mathrm{K}}\right)\left(\mathrm{K}-\mathrm{Q}_{1}\right)$
$-\left(\mathrm{P}_{1}-\mathrm{S}_{1}\right) \int_{0}^{\mathrm{Q}_{1}}\left[\mathrm{Q}_{1}-\mathrm{d}_{1}\right] \mathrm{f}\left(\mathrm{d}_{1}\right) \mathrm{dd}_{1}-\left(\mathrm{P}_{2}-\mathrm{S}_{2}\right) \int_{0}^{\mathrm{K}-\mathrm{Q}_{1}}\left[\mathrm{~K}-\mathrm{Q}_{1}-\mathrm{d}_{2}\right] \mathrm{f}\left(\mathrm{d}_{2}\right) \mathrm{dd}_{2}$
Now, $\frac{\partial \mathrm{E}(\Pi)}{\partial \mathrm{K}}=\left(\mathrm{P}_{2}-\mathrm{C}_{2}-\mathrm{C}_{\mathrm{K}}\right)-\left(\mathrm{P}_{2}-\mathrm{S}_{2}\right) \mathrm{F}_{2}\left(\mathrm{~K}-\mathrm{Q}_{1}\right)=0$.
Or, $\mathrm{F}_{2}\left(\mathrm{~K}-\mathrm{Q}_{1}\right)=\frac{\left(\mathrm{P}_{2}-\mathrm{C}_{2}-\mathrm{C}_{\mathrm{K}}\right)}{\left(\mathrm{P}_{2}-\mathrm{S}_{2}\right)}=\mathrm{F}_{2}\left(\mathrm{Q}_{2}\right)$.
Similarly, $\frac{\partial \mathrm{E}(\mathrm{I})}{\partial \mathrm{Q}_{1}}=$
$\left(\mathrm{P}_{1}-\mathrm{C}_{1}-\mathrm{C}_{\mathrm{K}}\right)-\left(\mathrm{P}_{2}-\mathrm{C}_{2}-\mathrm{C}_{\mathrm{K}}\right)-\left(\mathrm{P}_{2}-\mathrm{S}_{2}\right) \mathrm{F}_{2}\left(\mathrm{Q}_{1}\right)-\left(\mathrm{P}_{2}-\mathrm{S}_{2}\right) \mathrm{F}_{2}\left(\mathrm{~K}-\mathrm{Q}_{1}\right) \frac{\partial\left(\mathrm{K}-\mathrm{Q}_{1}\right)}{\partial \mathrm{Q}_{1}}=0$.
Or, $\mathrm{F}_{1}\left(\mathrm{Q}_{1}\right)=\frac{\left(\mathrm{P}_{1}-\mathrm{C}_{1}-\mathrm{C}_{\mathrm{K}}\right)}{\left(\mathrm{P}_{1}-\mathrm{S}_{1}\right)}$.

### 3.1.4. Product Flexible Plant:

Take, total capacity $=K$, where $\mathrm{Q}_{1}+\mathrm{Q}_{2} \leq \mathrm{K}$
Without the loss of generality, it has also been considered product 1 gives more contribution, i.e. $\left(\mathrm{P}_{1}-\mathrm{C}_{1}\right) \geq\left(\mathrm{P}_{2}-\mathrm{C}_{2}\right)$. Hence the firm will always try to meet the demand of product 1 first and after that it will go for product 2 .

Possible situations and the profit and opportunity cost values corresponding to those situations are:

| Situation | Profit | Opportunity loss |
| :--- | :--- | :--- |
| $D_{1}+D_{2}>K$ | $\left(P_{1}-C_{1}-C_{K}\right) D_{1}+\left(P_{2}-C_{2}-C_{K}\right)\left(K-D_{1}\right)$ | $\left(P_{2}-C_{2}-C_{K}\right)\left(D_{1}+D_{2}-K\right)$ |
| $D_{1}+D_{2} \leq K$ | $\left(P_{1}-C_{1}-C_{K}\right) D_{1}+\left(P_{2}-C_{2}-C_{K}\right) D_{2}-C_{K}\left(K-D_{1}-D_{2}\right)$ | $C_{K}\left(K-D_{1}-D_{2}\right)$ |

$\mathrm{E}(\Pi)=\int_{0}^{\infty} \int_{\mathrm{K}-\mathrm{d}_{1}}^{\infty}\left[\left(\mathrm{P}_{1}-\mathrm{C}_{1}\right) \mathrm{d}_{1}+\left(\mathrm{P}_{2}-\mathrm{C}_{2}\right)\left(\mathrm{K}-\mathrm{d}_{1}\right)\right] \mathrm{f}\left(\mathrm{d}_{1}, \mathrm{~d}_{2}\right) \mathrm{dd}_{1} \mathrm{dd}_{2}$
$+\int_{0}^{\infty} \int_{0}^{\mathrm{K}-\mathrm{d}_{1}}\left[\left(\mathrm{P}_{1}-\mathrm{C}_{1}\right) \mathrm{d}_{1}+\left(\mathrm{P}_{2}-\mathrm{C}_{2}\right) \mathrm{d}_{2}\right] \mathrm{f}\left(\mathrm{d}_{1}, \mathrm{~d}_{2}\right) \mathrm{dd}_{1} \mathrm{dd}_{2}-\mathrm{C}_{\mathrm{K}} \mathrm{K}$

Again considering demands are independent, i.e. $f\left(d_{1}, d_{2}\right)=f\left(d_{1}\right) f\left(d_{2}\right)$, the expression for expected profit works out as,
$\mathrm{E}(\Pi)=\left[\left(\mathrm{P}_{1}-\mathrm{C}_{1}\right)-\left(\mathrm{P}_{2}-\mathrm{C}_{2}\right)\right] \mu_{1}$
$+\left(\mathrm{P}_{2}-\mathrm{C}_{2}-\mathrm{C}_{\mathrm{K}}\right) \mathrm{K}-\left(\mathrm{P}_{2}-\mathrm{C}_{2}\right) \int_{0}^{\infty}\left[\int_{0}^{\mathrm{K}-\mathrm{d}_{1}}\left[\mathrm{~K}-\mathrm{d}_{1}-\mathrm{d}_{2}\right] \mathrm{f}\left(\mathrm{d}_{2}\right) \mathrm{dd}_{2}\right] \mathrm{f}\left(\mathrm{d}_{1}\right) \mathrm{dd}_{1}$
Where $\mu_{1}$ represents mean demand for product 1 .
Now, $\frac{\partial}{\partial \mathrm{K}}\left\{\int_{0}^{\infty}\left[\int_{0}^{\mathrm{K}-\mathrm{d}_{1}}\left[\mathrm{~K}-\mathrm{d}_{1}-\mathrm{d}_{2}\right] \mathrm{f}\left(\mathrm{d}_{2}\right) \mathrm{dd}_{2}\right] \mathrm{f}\left(\mathrm{d}_{1}\right) \mathrm{dd}_{1}\right\}=\int_{0}^{\infty}\left[\frac{\partial}{\partial \mathrm{K}} \int_{0}^{\mathrm{K}-\mathrm{d}_{1}}\left[\mathrm{~K}-\mathrm{d}_{1}-\mathrm{d}_{2}\right] \mathrm{f}\left(\mathrm{d}_{2}\right) \mathrm{dd}_{2}\right] \mathrm{f}\left(\mathrm{d}_{1}\right) \mathrm{dd}_{1}$
$=\int_{0}^{\infty}\left[\mathrm{F}_{2}\left(\mathrm{~K}-\mathrm{d}_{1}\right)\right] \mathrm{f}_{1}\left(\mathrm{~d}_{1}\right) \mathrm{dd}_{1}=\frac{\left(\mathrm{P}_{2}-\mathrm{C}_{2}-\mathrm{C}_{\mathrm{K}}\right)}{\left(\mathrm{P}_{2}-\mathrm{C}_{2}\right)}$
Proposition 5: For independent and normally distributed demands having negligible probability of having demand less than zero
a) Flexible plant optimal capacity is less than corresponding dedicated plant total capacities.
b) With the increase in demand variance, optimal capacity of the flexible plant increases, but the increase in optimal capacity is less than corresponding total increase in dedicated plant optimal capacity.

Proof: Consider demand for product i follows normal distribution with mean $\mu_{\mathrm{i}}$ and standard deviation $\sigma_{i}$.
Now, $\int_{0}^{\infty}\left[\mathrm{F}_{2}\left(\mathrm{~K}-\mathrm{d}_{1}\right)\right] \mathrm{f}_{1}\left(\mathrm{~d}_{1}\right) \mathrm{dd}_{1} \cong \int_{-\infty}^{\infty}\left[\mathrm{F}_{2}\left(\mathrm{~K}-\mathrm{d}_{1}\right)\right] \mathrm{f}_{1}\left(\mathrm{~d}_{1}\right) \mathrm{dd}_{1}=\operatorname{Prob}\left(\mathrm{D}_{1}+\mathrm{D}_{2} \leq \mathrm{K}\right)=\Phi\left(\frac{\mathrm{K}-\mu_{1}-\mu_{2}}{\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}}}\right)$
From eq. (7), $K=\mu_{1}+\mu_{2}+\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}}\left\{\Phi^{-1}\left[\frac{\left(\mathrm{P}_{2}-\mathrm{C}_{2}-\mathrm{C}_{\mathrm{K}}\right)}{\left(\mathrm{P}_{2}-\mathrm{C}_{2}\right)}\right]\right\}$
For dedicated plants, total capacity $=\mathrm{K}_{\mathrm{D}}=\mu_{1}+\sigma_{1} \Phi^{-1}\left[\frac{\left(\mathrm{P}_{1}-\mathrm{C}_{1}-\mathrm{C}_{\mathrm{K}}\right)}{\left(\mathrm{P}_{1}-\mathrm{C}_{1}\right)}\right]+\mu_{2}+\sigma_{2} \Phi^{-1}\left[\frac{\left(\mathrm{P}_{2}-\mathrm{C}_{2}-\mathrm{C}_{\mathrm{K}}\right)}{\left(\mathrm{P}_{2}-\mathrm{C}_{2}\right)}\right]$
$\mathrm{K}_{\mathrm{D}}-\mathrm{K}=\sigma_{1} \Phi^{-1}\left[\frac{\left(\mathrm{P}_{1}-\mathrm{C}_{1}-\mathrm{C}_{\mathrm{K}}\right)}{\left(\mathrm{P}_{1}-\mathrm{C}_{1}\right)}\right]+\sigma_{2} \Phi^{-1}\left[\frac{\left(\mathrm{P}_{2}-\mathrm{C}_{2}-\mathrm{C}_{\mathrm{K}}\right)}{\left(\mathrm{P}_{2}-\mathrm{C}_{2}\right)}\right]-\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}}\left\{\Phi^{-1}\left[\frac{\left(\mathrm{P}_{2}-\mathrm{C}_{2}-\mathrm{C}_{\mathrm{K}}\right)}{\left(\mathrm{P}_{2}-\mathrm{C}_{2}\right)}\right]\right\}$
$\operatorname{As}\left(\mathrm{P}_{1}-\mathrm{C}_{1}\right) \geq\left(\mathrm{P}_{2}-\mathrm{C}_{2}\right), \Phi^{-1}\left[\frac{\left(\mathrm{P}_{1}-\mathrm{C}_{1}-\mathrm{C}_{\mathrm{K}}\right)}{\left(\mathrm{P}_{1}-\mathrm{C}_{1}\right)}\right] \geq \Phi^{-1}\left[\frac{\left(\mathrm{P}_{1}-\mathrm{C}_{1}-\mathrm{C}_{\mathrm{K}}\right)}{\left(\mathrm{P}_{1}-\mathrm{C}_{1}\right)}\right]$
Hence, $\mathrm{K}_{\mathrm{D}}-\mathrm{K} \geq\left[\sigma_{1}+\sigma_{2}-\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}}\right] \Phi^{-1}\left[\frac{\left(\mathrm{P}_{1}-\mathrm{C}_{1}-\mathrm{C}_{\mathrm{K}}\right)}{\left(\mathrm{P}_{1}-\mathrm{C}_{1}\right)}\right]$
As $\sigma_{1}+\sigma_{2} \geq \sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}}, K_{D} \geq K$. This proves the first part.

With the increase in $\sigma_{i}, K_{D}$ and K both increases, but the increase in $\sigma_{1}+\sigma_{2}$ is more compared to $\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}}$. This proves the second part.

Although intuitive, however if one wants to establish the following, analytical difficulty happens in case of flexible plant profit.

For independent and normally distributed demands having negligible probability of having demand less than zero
a) Flexible plant optimal profit is more than corresponding dedicated plant total profits.
b) With the increase in demand variance, optimal profit of the flexible plant decreases, but the decrease in optimal profit is less than corresponding total decrease in dedicated plant optimal profit.
For this purpose one needs to show: $\mathrm{E}(\Pi) \geq \mathrm{E}\left(\Pi_{\mathrm{D}}\right)$.
Where, from eq. (6),

$$
\begin{aligned}
& \mathrm{E}(\Pi)=\left[\left(\mathrm{P}_{1}-\mathrm{C}_{1}\right)-\left(\mathrm{P}_{2}-\mathrm{C}_{2}\right)\right] \mu_{1}+\left(\mathrm{P}_{2}-\mathrm{C}_{2}-\mathrm{C}_{\mathrm{K}}\right) \mathrm{K} \\
& -\left(\mathrm{P}_{2}-\mathrm{C}_{2}\right) \int_{0}^{\infty}\left[\int_{0}^{\mathrm{K}-\mathrm{d}_{1}}\left[\mathrm{~K}-\mathrm{d}_{1}-\mathrm{d}_{2}\right] \mathrm{f}\left(\mathrm{~d}_{2}\right) \mathrm{dd}_{2}\right] \mathrm{f}\left(\mathrm{~d}_{1}\right) \mathrm{dd}_{1}
\end{aligned}
$$

From eq. (3), total profit for dedicated plants
$=E\left(\Pi_{D}\right)=\left(P_{1}-C_{1}-C_{K}\right) K_{1}-\left(P_{1}-C_{1}\right) \int_{0}^{K_{1}}\left[\left(\mathrm{~K}_{1}-\mathrm{d}_{1}\right)\right] \mathrm{f}\left(\mathrm{d}_{1}\right) \mathrm{dd}_{1}$
$+\left(\mathrm{P}_{2}-\mathrm{C}_{2}-\mathrm{C}_{\mathrm{K}}\right) \mathrm{K}_{2}-\left(\mathrm{P}_{2}-\mathrm{C}_{2}\right) \int_{0}^{\mathrm{K}_{2}}\left[\left(\mathrm{~K}_{2}-\mathrm{d}_{2}\right)\right] \mathrm{f}\left(\mathrm{d}_{2}\right) \mathrm{dd}_{2}$
The derivation of flexible plant profit, $\mathrm{E}(\Pi)$ has not been tried.

### 3.2. Simulated Data Based Optimization Procedure:

### 3.2.1. Methodology:

In the last section it has been observed that even for two product case with demands following independent distribution, finding a closed form solution for optimal profit and corresponding capacity is extremely difficult. The complexity increases if the demands are not independent. Only in some specific cases analytical calculation of stochastic programming is possible as the evaluation of expected value of demand involves calculation of multivariate integrals. A finite discretization of the random data allows writing the expectation in the form of summation and helps to solve the stochastic problem. In this sub-section this methodology has been developed. The model of flexible plant has been considered for this purpose.

The model for flexible plant:

$$
\Pi_{\text {Flexible Plant }}=\sum_{\mathrm{i}=1}^{\mathrm{m}}\left[\left(\mathrm{P}_{\mathrm{i}}-\mathrm{C}_{\mathrm{i}}\right) \operatorname{Min}\left(\mathrm{D}_{\mathrm{i}}, \mathrm{~K}_{\mathrm{i}}\right)\right]-\mathrm{C}_{\text {Flexible Plant }} \mathrm{K}
$$

Take, $\mathrm{Z}_{\mathrm{i}}=\operatorname{Min}\left(\mathrm{D}_{\mathrm{i}}, \mathrm{K}_{\mathrm{i}}\right)=$ Production quantity of product i , where, $\sum_{\mathrm{i}=1}^{\mathrm{m}} \mathrm{K}_{\mathrm{i}}=\mathrm{K}$.
The deterministic version of the flexible plant model (where $\mathrm{d}_{\mathrm{i}}$ values are known with certainty) can be written as:

Maximize
Subject to:

$$
\begin{array}{cc}
\sum_{\mathrm{i}=1}^{\mathrm{m}}\left[\left(\mathrm{P}_{\mathrm{i}}-\mathrm{C}_{\mathrm{i}}\right) \mathrm{Z}_{\mathrm{i}}\right]-\mathrm{C}_{\text {Flexible Plant }} \mathrm{K} \\
\mathrm{Z}_{\mathrm{i}} \leq \mathrm{D}_{\mathrm{i}} & \forall \mathrm{i} \\
\sum_{\mathrm{i}=1}^{\mathrm{m}} \mathrm{Z}_{\mathrm{i}}-\mathrm{K} \leq 0 & \\
\mathrm{Z}_{\mathrm{i}}, \mathrm{~K} \geq 0 & \forall \mathrm{i}
\end{array}
$$

But in real life $d_{i}$ values are not known. One has the idea of the distribution of the $d_{i}$ values only and before the realization of these values one need to set the capacity K. To summarize this, time sequence is as follows (Wagner, 1993, Ch. 16, p. 667);
a) First stage: Manufacturer selects level of K.
b) Random event: Values of $\mathrm{d}_{\mathrm{i}}$ are known and are independent of K .
c) Second stage: Manufacturer selects the level of $\mathrm{Z}_{\mathrm{i}}$, the production quantity.

Given the time sequence, manufacturer selects K for which expected profit has been maximized. The problem can be formulated as stochastic programming with recourse in the following way:

First stage problem:

$$
\max _{K \geq 0} \Pi(\mathrm{~K})=\mathrm{E}\left[\Pi^{*}(\mathrm{~K}, \mathbf{D})\right]-\mathrm{C}_{\text {Flexible Plant }} \mathrm{K}
$$

Second stage problem:
$\Pi^{*}(\mathrm{~K}, \mathbf{d})=\max _{\mathbf{Z} \geq 0} \Pi(\mathrm{~K}, \mathbf{d})=\max \sum_{\mathrm{i}=1}^{\mathrm{m}}\left[\left(\mathrm{P}_{\mathrm{i}}-\mathrm{C}_{\mathrm{i}}\right) \mathrm{Z}_{\mathrm{i}}\right]$
Subject to: $\quad Z_{i} \leq d_{i} \quad \forall i$

$$
\sum_{\mathrm{i}=1}^{\mathrm{m}} \mathrm{Z}_{\mathrm{i}}-\mathrm{K} \leq 0
$$

Here, $\mathbf{D}=\left(D_{1}, D_{2}, \ldots, D_{m}\right), \mathbf{d}=\left(d_{1}, d_{2}, \ldots, d_{m}\right)$ and $\mathbf{Z}=\left(Z_{1}, Z_{2}, \ldots, Z_{m}\right)$. Also $E($.$) is the$ expectation operator.

Now, consider only three values of $\mathbf{d}$ are possible with known probability $p_{j} s$ where $\sum_{j=1}^{3} p_{j}=1$.
Hence the possible cases are (considering two product case): $\mathrm{d}_{11}, \mathrm{~d}_{12}$ with probability $\mathrm{p}_{1} ; \mathrm{d}_{21}, \mathrm{~d}_{22}$ with probability $p_{2}$ and $d_{31}, d_{32}$ with probability $p_{3}$. Since $K$ has been determined before the realization of the demand values, these variables will also come in stochastic programming formulation. The remaining decision variables $\mathrm{Z}_{\mathrm{i}}$ have been determined after the realization of the demand. Hence, they have been noted as $\mathrm{Z}_{\mathrm{ij}}$ for $\mathrm{i}=1,2$ and $\mathrm{j}=1,2,3$.

As long as the decision variables in the first stage (here capacity K ) do not depend on the realization of the random event, the two stage problem can be expressed as a single optimization model like below:

Maximize

$$
\sum_{\mathrm{j}=1}^{3}\left\{\sum_{\mathrm{i}=1}^{2}\left[\left(\mathrm{P}_{\mathrm{i}}-\mathrm{C}_{\mathrm{i}}\right) \mathrm{Z}_{\mathrm{ij}}\right]\right\} \mathrm{p}_{\mathrm{j}}-\mathrm{C}_{\text {Flexible Plant }} \mathrm{K}
$$

Subject to:

$$
\begin{array}{ll}
\mathrm{Z}_{\mathrm{ij}} \leq \mathrm{d}_{\mathrm{ij}} & \forall \mathrm{i}, \mathrm{j} \\
\sum_{\mathrm{i}=1}^{2} \mathrm{Z}_{\mathrm{ij}}-\mathrm{K} \leq 0 & \forall \mathrm{j} \\
\mathrm{Z}_{\mathrm{ij}}, \mathrm{~K} \geq 0 & \forall \mathrm{i}, \mathrm{j}
\end{array}
$$

Here, the stochastic programming version of the problem has more number of constraints compared to its deterministic version.
As the first stage variable K do not depend on the outcome of the $\mathrm{j}^{\text {th }}$ scenario, objective function can be rewritten as:

$$
\text { Maximize } \quad-\mathrm{C}_{\text {Flexible Plant }} \mathrm{K}+\mathrm{E}\left[\left\{\sum_{\mathrm{i}=1}^{2}\left[\left(\mathrm{P}_{\mathrm{i}}-\mathrm{C}_{\mathrm{i}}\right) \mathrm{Z}_{\mathrm{ij}}\right] \mathrm{p}_{\mathrm{j}}\right]\right.
$$

Finally, the distribution of $\mathbf{d}$ has been approximated by taking large number of values generated from the distribution. So all $p_{j}$ values are equally likely and the model becomes:

Maximize

$$
\frac{1}{\mathrm{n}} \sum_{\mathrm{j}=1}^{\mathrm{n}} \sum_{\mathrm{i}=1}^{2}\left[\left(\mathrm{P}_{\mathrm{i}}-\mathrm{C}_{\mathrm{i}}\right) \mathrm{Z}_{\mathrm{ij}}\right]-\mathrm{C}_{\text {Flexible Plant }} \mathrm{K}
$$

Subject to:

$$
\begin{array}{ll}
\mathrm{Z}_{\mathrm{ij}} \leq \mathrm{d}_{\mathrm{ij}} & \forall \mathrm{i}, \mathrm{j} \\
\sum_{\mathrm{i}=1}^{2} \mathrm{Z}_{\mathrm{ij}}-\mathrm{K} \leq 0 & \forall \mathrm{j} \\
\mathrm{Z}_{\mathrm{ij}}, \mathrm{~K} \geq 0 & \forall \mathrm{i}, \mathrm{j}
\end{array}
$$

However, with this procedure one trade off has been necessary. On one side, with the increase in number of products sample sets needs to be increased, otherwise the gap between sample statistic and parameter value increases. On the other side, with the increase in sample values the complexity of the problem increases and with the increase in number of products the complexity increases exponentially. Hence, to keep the accuracy of the results high, too many products have not been considered.

As discussed earlier in proposition 4, flexible plant without production postponement is not better option compared to multiple dedicated plants. So this strategy has been omitted in this section. The additional notations used in the models have been shown below:
$\mathrm{d}_{\mathrm{ij}}=$ Demand for product i at iteration j
$\mathrm{C}_{\text {Strategy }} \mathrm{s}=$ marginal cost of capacity for strategy S

### 3.2.2. Models:

Two Product, Dedicated Plants, No Production Postponement:
$\Pi_{\text {Strategy } 1}=\sum_{\mathrm{i}=1}^{2}\left[\mathrm{P}_{\mathrm{i}} \operatorname{Min}\left(\mathrm{D}_{\mathrm{i}}, \mathrm{K}_{\mathrm{i}}\right)+\mathrm{S}_{\mathrm{i}} \operatorname{Max}\left(\mathrm{K}_{\mathrm{i}}-\mathrm{D}_{\mathrm{i}}, 0\right)-\mathrm{C}_{\mathrm{i}} \mathrm{K}_{\mathrm{i}}\right]-\mathrm{C}_{\text {Strategy }}{ }_{1} \sum_{\mathrm{i}=1}^{2} \mathrm{~K}_{\mathrm{i}}$
Take, $\mathrm{Z}_{\mathrm{i}}=\operatorname{Min}\left(\mathrm{D}_{\mathrm{i}}, \mathrm{K}_{\mathrm{i}}\right)=$ Sales quantity of product i in the primary market
Then, $\operatorname{Max}\left(\mathrm{K}_{\mathrm{i}}-\mathrm{D}_{\mathrm{i}}, 0\right)=-\operatorname{Min}\left(\mathrm{D}_{\mathrm{i}}-\mathrm{K}_{\mathrm{i}}, 0\right)=-\operatorname{Min}\left(\mathrm{D}_{\mathrm{i}}, \mathrm{K}_{\mathrm{i}}\right)+\mathrm{K}_{\mathrm{i}}=-\mathrm{Z}_{\mathrm{i}}+\mathrm{K}_{\mathrm{i}}$
Hence the simulated data based optimization model becomes,
Maximize

$$
\frac{1}{\mathrm{n}} \sum_{\mathrm{j}=1}^{\mathrm{n}} \sum_{\mathrm{i}=1}^{2}\left[\left(\mathrm{P}_{\mathrm{i}}-\mathrm{S}_{\mathrm{i}}\right) \mathrm{Z}_{\mathrm{ij}}\right]-\sum_{\mathrm{i}=1}^{2}\left(\mathrm{C}_{\text {Strategy }} 1+\mathrm{C}_{\mathrm{i}}-\mathrm{S}_{\mathrm{i}}\right) \mathrm{K}_{\mathrm{i}}
$$

Subject to:

$$
\begin{array}{ll}
\mathrm{Z}_{\mathrm{ij}} \leq \mathrm{d}_{\mathrm{ij}} & \forall \mathrm{i}, \mathrm{j} \\
\mathrm{Z}_{\mathrm{ij}}-\mathrm{K}_{\mathrm{i}} \leq 0 & \forall \mathrm{i}, \mathrm{j} \\
\mathrm{Z}_{\mathrm{ij}}, \mathrm{~K}_{\mathrm{i}} \geq 0 & \forall \mathrm{i}, \mathrm{j}
\end{array}
$$

## Two Product, Dedicated Plants, Production Postponement:

$\Pi_{\text {Strategy } 2}=\sum_{\mathrm{i}=1}^{2}\left[\left(\mathrm{P}_{\mathrm{i}}-\mathrm{C}_{\mathrm{i}}\right) \operatorname{Min}\left(\mathrm{D}_{\mathrm{i}}, \mathrm{K}_{\mathrm{i}}\right)\right]-\mathrm{C}_{\text {Strategy }} 2 \sum_{\mathrm{i}=1}^{2} \mathrm{~K}_{\mathrm{i}}$
Take, $\mathrm{M}_{\mathrm{i}}=\operatorname{Min}\left(\mathrm{D}_{\mathrm{i}}, \mathrm{K}_{\mathrm{i}}\right)=$ Production quantity of product i
Hence the simulated data based optimization model becomes,
Maximize $\quad \frac{1}{\mathrm{n}} \sum_{\mathrm{j}=1}^{\mathrm{n}} \sum_{\mathrm{i}=1}^{2}\left[\left(\mathrm{P}_{\mathrm{i}}-\mathrm{C}_{\mathrm{i}}\right) \mathrm{M}_{\mathrm{ij}}\right]-\mathrm{C}_{\text {Strategy }}{ }_{2} \sum_{\mathrm{i}=1}^{2} \mathrm{~K}_{\mathrm{i}}$
Subject to: $\quad \mathrm{M}_{\mathrm{ij}} \leq \mathrm{d}_{\mathrm{ij}} \quad \forall \mathrm{i}, \mathrm{j}$
$\mathrm{M}_{\mathrm{ij}}-\mathrm{K}_{\mathrm{i}} \leq 0 \quad \forall \mathrm{i}, \mathrm{j}$
$\mathrm{M}_{\mathrm{ij}}, \mathrm{K}_{\mathrm{i}} \geq 0 \quad \forall \mathrm{i}, \mathrm{j}$

## Two Product, Flexible Plant:

This strategy has been discussed already in the previous sub-section.

### 3.3. Comparison between Analytical and Simulated Data Based Procedure:

To find optimal capacity levels and maximum profit and corresponding optimal capacity values for the three strategies discussed above, working has been done on two different parameter sets. The values have been generated by both analytical (wherever possible) and simulated data based procedure. In both the examples demands have been considered to be followed independent normal distribution with given parameters. Using these parameters 10,000 demand scenarios has been generated. Percent deviation has been calculated using the following formula:

Percent deviation $=($ Simulated data based result - Analytical result $) \times 100 /($ Analytical result $)$

Example 1: Consider marginal cost of Capacity for any case $=4$.
Other Parameters are shown below:

| Data | Price | Cost | Salvage Value | Mean Demand | Std. dev. of Demand |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Product 1 | 15 | 9 | 5 | 100 | 25 |
| Product 2 | 13 | 8 | 3 | 200 | 40 |


| Analytical | Case 1 |  | Case 2 |  | Case 3 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| based results | Capacity | Profit | Capacity | Profit | Capacity | Profit |
| Product 1 | 78.96 | 130.0 | 89.23 | 145.5 | 260.3 | -- |
| Product 2 | 148.74 | 129.8 | 166.34 | 144.0 |  |  |


| Simulated data based results | Case 1 |  | Case 2 |  | Case 3 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Capacity | Profit | Capacity | Profit | Capacity | Profit |
| Product 1 | 79.24 | 130.7 | 89.59 | 146.2 | 260.74 | 334.2 |
| Product 2 | 148.25 | 129.4 | 166.03 | 143.6 |  |  |


| Percent | Case 1 |  | Case 2 |  | Case 3 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| deviation | Capacity | Profit | Capacity | Profit | Capacity | Profit |
| Product 1 | 0.35 | 0.54 | 0.40 | 0.48 | 0.17 | -- |
| Product 2 | -0.33 | -0.31 | -0.19 | -0.28 |  |  |

Example 2: Consider marginal cost of Capacity for any case $=4$.
Other Parameters are shown below:

| Data | Price | Cost | Salvage Value | Mean Demand | Std. dev. of Demand |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Product 1 | 15 | 9 | 5 | 200 | 40 |
| Product 2 | 13 | 8 | 3 | 100 | 25 |


| Analytical | Case 1 |  | Case 2 |  | Case 3 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| based results | Capacity | Profit | Capacity | Profit | Capacity | Profit |
| Product 1 | 166.34 | 288 | 182.77 | 312.7 | 260.3 | -- |
| Product 2 | 67.96 | 56.2 | 78.96 | 65.0 |  |  |


| Simulated data <br> based results | Case 1 |  | Case 2 |  | Case 3 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Capacity | Profit | Capacity | Profit | Capacity | Profit |
| Product 2 | 66.05 | 288.2 | 182.79 | 312.6 | 260.32 | 434.6 |


| Percent <br> deviation | Case 1 |  | Case 2 |  | Case 3 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Capacity | Profit | Capacity | Profit | Capacity | Profit |
| Product 1 | -0.17 | 0.07 | 0.01 | -0.03 | 0.01 | -- |
| Product 2 | 0.15 | 0.53 | -0.08 | 0.31 |  |  |

From the above examples one can conclude that the results found using simulated data based optimization procedures are very close to the results found using analytical procedures (deviations are less than $0.5 \%$ for most of the cases). Now, in the next sections, multivariate analysis and correlation will be introduced, and this becomes extremely difficult if not impossible to solve by analytical method and obtain closed form solution for optimum profit and capacity levels. Hence for the rest of the paper, whenever it has been required to maximize profit for the optimal capacity levels, simulated data based optimization has been used.

## 4. Multi Product Cases:

### 4.1. Methodology:

In this section multivariate normal demand distribution has been considered, so that it can capture the effects of correlation on profit level. Normal numbers have been generated by using variance-covariance matrix. The demands of the products $D_{i} \in R_{+}$are random draws from a multivariate normal distribution function. For product $i$, realization of demand is $d_{i}$, the mean of the marginal distribution is $\mu_{\mathrm{i}}$, the variance is $\sigma_{\mathrm{i}}^{2}$, and the covariance of the joint distribution is $\sigma_{i k}=\rho_{i k} \sigma_{i} \sigma_{k}$, where $1 \geq \rho_{i k} \geq-1$ for $i \neq k$.
For three products following correlated multivariate distribution, finite discretization of random parameter allows writing the expectation in the form of summation and makes the problem tractable. The random multivariate normal numbers have been produced by pre-multiplying a vector of random univariate normal numbers by the Cholesky decomposition of the VarianceCovariance matrix (V) according to the formula:

$$
\begin{equation*}
\mathbf{Z}=\boldsymbol{\mu}+\mathbf{L} \mathbf{X} \tag{8}
\end{equation*}
$$

Where,

$$
\begin{aligned}
& \mathbf{Z}=\text { a vector of random multivariate normal numbers } \\
& \boldsymbol{\mu}=\text { a vector of mean of the marginal distribution } \\
& \mathbf{X}=\text { a vector of random univariate normal numbers } \\
& \mathbf{L}=\text { the Cholesky decomposition of the covariance matrix. }
\end{aligned}
$$

Here the values derived from the Cholesky decomposition have been stored in the lower triangle and main diagonal of a square matrix; elements in the upper triangle of the matrix are 0 .

If variance-covariance matrix is real, symmetric and positive definite, then Cholesky decomposition exists.

## Positive-definiteness:

An arbitrary matrix is positive definite if and only if all the principal sub-matrices have a positive determinant.

### 4.1.1. Cholesky decomposition Algorithm:

$\boldsymbol{V}=\boldsymbol{L} \boldsymbol{L}^{\boldsymbol{T}}$
Start with $\mathbf{L}=0$
for $i=1 \ldots m$ do
Subtract from $v_{i, i}$, the dot product of the ith row of $L$ with itself and set $l_{i, i}$ to be the square root of this.
for $j=i+1, \ldots, m$
Subtract from $l_{i, j}$, the dot product of the ith and jth rows of $L$ and set $l_{j, i}$ to be this result divided by $l_{i, i}$.

### 4.1.2. Example of Cholesky Decomposition:

Consider V, a [ $3 \times 3$ ] matrix, as given below:

$$
\mathbf{V}=\left[\begin{array}{ccc}
10 & 2 & -4 \\
2 & 15 & 1 \\
-4 & 1 & 6
\end{array}\right]
$$

Matrix is real, symmetric and positive definite. Hence Cholesky decomposition exists. The steps are shown below:

$$
\mathbf{L}^{\mathbf{1}}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

For $\mathrm{i}=1, \mathrm{v}_{1,1}=10$ and $1^{\text {st }}$ row of $\mathbf{L}=\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$; the dot product $=0 \times 0+0 \times 0+0 \times 0=0$; hence, $1_{1,1}=\sqrt{ }\left(v_{1,1}-\right.$ dot product $)=\sqrt{ }(10-0)=3.16$.

$$
\mathbf{L}^{2}=\left[\begin{array}{ccc}
3.16 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Given $\mathrm{i}=1$, for $\mathrm{j}=2$, $1^{\text {st }}$ row of $\mathbf{L}=\left[\begin{array}{lll}3.16 & 0 & 0\end{array}\right]$ and $2^{\text {nd }}$ row of $\mathbf{L}=\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$; the dot product $=3.16 \times 0+0 \times 0+0 \times 0=0$; hence $1_{2,1}=\left(\mathrm{v}_{2,1}-\right.$ dot product $) / 1_{1,1}=2 / 3.16=0.63$.

Given $\mathrm{i}=1$, for $\mathrm{j}=3$, $1^{\text {st }}$ row of $\mathbf{L}=\left[\begin{array}{lll}3.16 & 0 & 0\end{array}\right]$ and $3^{\text {rd }}$ row of $\mathbf{L}=\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$; the dot product $=3.16 \times 0+0 \times 0+0 \times 0=0$; hence $1_{3,1}=\left(v_{3,1}-\right.$ dot product $) / 1_{1,1}=-4 / 3.16=-1.26$.

$$
\mathbf{L}^{\mathbf{3}}=\left[\begin{array}{ccc}
3.16 & 0 & 0 \\
0.63 & 0 & 0 \\
-1.26 & 0 & 0
\end{array}\right]
$$

For $\mathrm{i}=2, \mathrm{v}_{2,2}=15$ and $2^{\text {nd }}$ row of $\mathbf{L}=\left[\begin{array}{lll}0.63 & 0 & 0\end{array}\right]$; the dot product $=0.63 \times 0.63+0 \times 0+0 \times 0=$ 0.3969 ; hence, $1_{2,2}=\sqrt{ }\left(\mathrm{v}_{2,2}-\operatorname{dot}\right.$ product $)=\sqrt{ }(15-0.3969)=3.82$.

$$
\mathbf{L}^{\mathbf{4}}=\left[\begin{array}{ccc}
3.16 & 0 & 0 \\
0.63 & 3.82 & 0 \\
-1.26 & 0 & 0
\end{array}\right]
$$

Given $\mathrm{i}=2$, for $\mathrm{j}=3,2^{\text {nd }}$ row of $\mathbf{L}=\left[\begin{array}{lll}0.63 & 3.82 & 0\end{array}\right]$ and $3^{\text {rd }}$ row of $\mathbf{L}=\left[\begin{array}{lll}-1.26 & 0 & 0\end{array}\right]$; the dot product $=0.63 \times(-1.26)+3.82 \times 0+0 \times 0=0$; hence $1_{3,2}=\left(\mathrm{v}_{3,2}-\right.$ dot product $) / 1_{2,2}=(1-(-$ $0.79)$ ) $/ 3.82=0.47$.

$$
\mathbf{L}^{\mathbf{5}}=\left[\begin{array}{ccc}
3.16 & 0 & 0 \\
0.63 & 3.82 & 0 \\
-1.26 & 0.47 & 0
\end{array}\right]
$$

For $\mathrm{i}=3, \mathrm{v}_{3,3}=6$ and $3^{\text {rd }}$ row of $\mathbf{L}=\left[\begin{array}{ccc}-1.26 & 0.47 & 0\end{array}\right]$; the dot product $=(-1.26) \times(-1.26)+$ $0.47 \times 0.47+0 \times 0=1.8$; hence, $1_{3,3}=\sqrt{ }\left(\mathrm{v}_{3,3}-\right.$ dot product $)=\sqrt{ }(6-1.8)=2.04$.

Finally $\mathbf{L}=\left[\begin{array}{ccc}3.16 & 0 & 0 \\ 0.63 & 3.82 & 0 \\ -1.26 & 0.47 & 2.04\end{array}\right]$
Now, as per eq. (1) one only needs to generate $\mathbf{X}$, column vector of standard normal random numbers. Then by the use of eq. (1), each set of $\mathbf{X}$ has been used generates one set of random numbers from multivariate normal distribution. In this way, 10,000 sets of samples have generated for the purpose. It has been seen that, with this large number the samples, statistics follow original distribution parameters.

Alike previous section, here also 10,000 demand data sets have been used for the optimization procedure. Models for simulated data based optimization are same as two product cases (section 3.3), except total number of products in these cases are 3. Hence, in this sub-section opportunity loss models for the above-mentioned strategies have been introduced.

### 4.2. Opportunity Loss Models:

## Multi Product, Dedicated Plants, No Production Postponement:

$\Pi_{\text {Strategy } 1}=\sum_{\mathrm{i}=1}^{\mathrm{m}}\left[\left(\mathrm{P}_{\mathrm{i}}-\mathrm{C}_{\mathrm{i}}\right) \operatorname{Max}\left(\mathrm{D}_{\mathrm{i}}-\mathrm{K}_{\mathrm{i}}, 0\right)+\left(\mathrm{S}_{\mathrm{i}}-\mathrm{C}_{\mathrm{i}}\right) \operatorname{Max}\left(\mathrm{K}_{\mathrm{i}}-\mathrm{D}_{\mathrm{i}}, 0\right)\right]+\mathrm{C}_{\text {Strategy }}{ }_{1} \sum_{\mathrm{i}=1}^{\mathrm{m}} \mathrm{K}_{\mathrm{i}}$ Hence the model becomes,

Minimize $\quad \frac{1}{n} \sum_{\mathrm{j}=1}^{\mathrm{n}} \sum_{\mathrm{i}=1}^{\mathrm{m}}\left[\left(\mathrm{P}_{\mathrm{i}}-\mathrm{C}_{\mathrm{i}}\right) \mathrm{U}_{\mathrm{ij}}-\left(\mathrm{S}_{\mathrm{i}}-\mathrm{C}_{\mathrm{i}}\right) \mathrm{V}_{\mathrm{ij}}\right]+\mathrm{C}_{\text {Strategy }}{ }_{1} \sum_{\mathrm{i}=1}^{\mathrm{m}} \mathrm{K}_{\mathrm{i}}$
Subject to: $\quad \mathrm{D}_{\mathrm{ij}}-\mathrm{K}_{\mathrm{i}}=\mathrm{U}_{\mathrm{ij}}-\mathrm{V}_{\mathrm{ij}} \quad \forall \mathrm{i}, \mathrm{j}$

$$
\mathrm{U}_{\mathrm{ij}}, V_{\mathrm{ij}}, \mathrm{~K}_{\mathrm{i}} \geq 0 \quad \forall \mathrm{i}, \mathrm{j}
$$

Multi Product, Dedicated Plants, Production Postponement:
$\Pi_{\text {Strategy } 2}=\sum_{\mathrm{i}=1}^{\mathrm{m}}\left[\left(\mathrm{P}_{\mathrm{i}}-\mathrm{C}_{\mathrm{i}}\right) \operatorname{Max}\left(\mathrm{D}_{\mathrm{i}}-\mathrm{K}_{\mathrm{i}}, 0\right)\right]+\mathrm{C}_{\text {Strategy } 2} \sum_{\mathrm{i}=1}^{\mathrm{m}} \mathrm{K}_{\mathrm{i}}$
Hence the model becomes,
Minimize $\quad \frac{1}{\mathrm{n}} \sum_{\mathrm{j}=1}^{\mathrm{n}} \sum_{\mathrm{i}=1}^{\mathrm{m}}\left[\left(\mathrm{P}_{\mathrm{i}}-\mathrm{C}_{\mathrm{i}}\right) \mathrm{U}_{\mathrm{ij}}\right]+\mathrm{C}_{\text {Strategy }}{ }_{2} \sum_{\mathrm{i}=1}^{\mathrm{m}} \mathrm{K}_{\mathrm{i}}$
Subject to:

$$
\begin{array}{ll}
\mathrm{D}_{\mathrm{ij}}-\mathrm{K}_{\mathrm{i}}=\mathrm{U}_{\mathrm{ij}}-\mathrm{V}_{\mathrm{ij}} & \forall \mathrm{i}, \mathrm{j} \\
\mathrm{U}_{\mathrm{ij}}, V_{\mathrm{ij}}, \mathrm{~K}_{\mathrm{i}} \geq 0 & \forall \mathrm{i}, \mathrm{j}
\end{array}
$$

## Multi Product, Flexible Plant:

$\Pi_{\text {Strategy }}=\sum_{\mathrm{i}=1}^{\mathrm{m}}\left[\left(\mathrm{P}_{\mathrm{i}}-\mathrm{C}_{\mathrm{i}}\right) \operatorname{Max}\left(\mathrm{D}_{\mathrm{i}}-\mathrm{K}_{\mathrm{i}}, 0\right)\right]+\mathrm{C}_{\text {Strategy }}{ }_{3} \mathrm{~K}$
Hence the model becomes,
Minimize $\quad \frac{1}{\mathrm{n}} \sum_{\mathrm{j}=1}^{\mathrm{n}} \sum_{\mathrm{i}=1}^{\mathrm{m}}\left[\left(\mathrm{P}_{\mathrm{i}}-\mathrm{C}_{\mathrm{i}}\right) \mathrm{U}_{\mathrm{ij}}\right]+\mathrm{C}_{\text {Strategy }}{ }_{3} \mathrm{~K}$
Subject to: $\quad \sum_{\mathrm{i}=1}^{\mathrm{m}} \mathrm{D}_{\mathrm{ij}}-\mathrm{K}=\sum_{\mathrm{i}=1}^{\mathrm{m}}\left(\mathrm{U}_{\mathrm{ij}}-\mathrm{V}_{\mathrm{ij}}\right) \quad \forall \mathrm{j}$

$$
\mathrm{U}_{\mathrm{ij}}, V_{\mathrm{ij}}, \mathrm{~K}_{\mathrm{i}} \geq 0 \quad \forall \mathrm{i}, \mathrm{j}
$$

As intuitive, capacity values in case of profit models and opportunity loss models are same.

### 4.3. Findings:

Variance and coefficient of variation represent two common measures of individual level of demand uncertainty. On the other hand change in correlation changes aggregate level demand uncertainty keeping variance unchanged. In the numerical analysis, considering three-product environment, the effect of these uncertainties on optimal expected total profit and corresponding total capacity level has been tried to capture for all the strategies discussed above. $\mu_{\mathrm{i}}=500, \mathrm{P}_{\mathrm{i}}=$ $80, C_{i}=20, S_{i}=5$ for all products and $C_{\text {Strategy }} \mathrm{S}=10$ for all strategies. However, incorporating differences in cost of capacities of dedicated and flexible plants can be easily done. To check the
effects of uncertainty following parameter sets have been considered: changes in coefficient of variation $=\{0.05,0.1,0.15,0.2\}$, changes in variance $=\{2000,4000,6000,8000,10000\}$, changes in correlation $=\{0.99,0.5,0.25,0,-0.25,-0.5\}$ for all products. The results are tabulated in Appendix A.1. The graphs have been shown in Appendix E. The observations have been discussed below:

1) Except when correlation is negative, the capacity of the flexible plant remains in between total capacity of the dedicated plants having no postponement and the same having production postponement, with last one giving the highest capacity. However, for highly positively correlated (0.99) demands, under postponement, the capacity of flexible plant becomes equal to aggregate capacity of dedicated plants. For negatively correlated demands, flexible plant optimal capacity is always the least. Intuitively, production postponement tends to increase the capacity as a result of elimination of overproduction, while the flexibility reduces the capacity due to pooling effect. For highly negatively correlated demands, aggregate demand variance almost reduces to zero and capacity approaches total mean demand value. For example in our case minimum possible correlation is -0.5 , as variancecovariance matrix does not remain positive definite below this value. At this level of correlation, irrespective of variance, total demand realization becomes 1500. Hence there is no aggregate level of uncertainty at this value and flexible plant capacity also remains at 1500.
2) In terms of profit, flexible plant always remains the best choice, followed by dedicated plant with production postponement; dedicated plants having no postponement give the least profit. For negatively correlated demand benefit from flexible plant is intuitive as below average realized demand for one product has been compensated by the higher than average realized demand for another product. For example alike capacity, with correlation of -0.5 , profit remains unaffected by the variance level. However, for highly positively correlated (0.99) demands, under postponement, the profit from flexible plant becomes equal to that of dedicated plant.
3) For dedicated plant strategies, profit and capacity remains unaffected with the change in correlation coefficient. However, with the reduction in correlation flexible plant optimal profit increases and capacity decreases.

Now the effects of uncertainties have been discussed on the strategies for a) change in demand differential, b) change in price differential, c) change in price and d) change in capacity cost.
a) When the effects of change in demand differential have been examined, mean demands for the products have been considered as follows: $\{500,500,500\} ;\{400,500,600\}$ and $\{250$, $500,750\}$. This helps to observe the effects on three levels of demand differential, $\{0,200$, $500\}$, average mean demand unchanged, where first one corresponds to the base case. Other values remain same: $P_{i}=80, C_{i}=20, S_{i}=5$ and $C_{S t r a t e g y ~}^{S}=10$. The results have been tabulated in Appendix A.1. The graphs have been shown in Appendix E. it has been observed that, changes in demand differential, has no effect on optimal profit and capacity for any of the three strategies, but individual profits and capacities change.
b) For examining the effects of change in price differential, prices for the products have been considered as follows: $\{80,80,80\} ;\{60,80,100\}$ and $\{40,80,120\}$. This helps to observe the effects on three levels of price differential, $\{0,40,80\}$, where first one corresponds to the base case and average product price remains unchanged. Other values remain same: $\mu_{i}=500$, $\mathrm{C}_{\mathrm{i}}=20, \mathrm{~S}_{\mathrm{i}}=5$ and $\mathrm{C}_{\text {Strategy }} \mathrm{S}=10$. The results have been tabulated in Appendix A.2. The graphs have been shown in Appendix E. Increase in price differential decreases capacity for all three strategies. However, the effect of price differential on optimal total profit is not much.
c) For observing the effects of change in price, three price levels, $\{40,55,80\}$ have been considered, where all the products have same price. Other values remain same: $\mu_{\mathrm{i}}=500, \mathrm{C}_{\mathrm{i}}=$ 20, $S_{i}=5$ and $C_{\text {Strategy }}=10$. The results have been tabulated in Appendix A.3. The graphs have been shown in Appendix E. The effects of no postponement and postponement on optimal total capacity and profit have been discussed below.

1) In case of dedicated plant with no production postponement strategy when price of the product is low (40), capacity is less than the expected total demand and capacity decreases with the increase in variance. Similarly, when price of the product is high (80), capacity is greater than the expected total demand and capacity increases with the increase in variance. The reason is quite simple; when price is low, then cost of overstocking ( $20+10-5=25$ ) exceeds the cost of understocking ( $40-20-10=10$ ) and the capacity is maintained at a lower side. With the increase in variance, expected loss from overstocking increases more compared to expected loss from understocking.

Hence the capacity also reduces. When the price is high exactly opposite happens (cost of overstocking $=25<$ cost of understocking $=50$ ). When cost of overstocking and cost of understocking are almost same (at price 55 the value is 25 ), capacity has been maintained near to expected demand value and capacity remains indifferent with the change in variance. However optimal expected profit always reduces with the increase in variance or coefficient of variation as with the increase in individual uncertainty both the expected understocking and expected overstocking cost increases. These results are in line with the analytical findings in two product case.
2) In case of production postponement, capacity increases and profit reduces with the increase in variance for both dedicated and flexible plants. However, when the cost of overcapacity and the cost of undercapacity both remain same, optimal total capacity level remains almost equal to total mean demand in both dedicated and flexible plants having production postponement and remains unaffected by the changes in variance and correlation. For example, when price is 55 , cost of undercapacity $=55-20-10=25$; when price is 40 , cost of undercapacity $=40-20-10=10$, where the cost of overcapacity $=$ capacity cost $=10$. In the first case total capacity is higher than mean demand, 1500 . However, in the second case total capacity approaches the mean demand and remains unaffected by variance. The reason is quite simple. In case of production postponement there is no chance of overproduction, but there is always cost of underproduction due to capacity constraint and is same as undercapacity cost. As long as the cost of overcapacity does not exceed the cost of undercapacity, firm always gains from higher realized demand by maintaining higher capacity. At the same time, there is no loss from low realized demand except having idle capacity. But if the overcapacity cost is higher, the firm only tries to maintain capacity at mean demand level.
d) For looking into the effects of change in capacity cost, three levels, $\{5,10,15\}$ have been considered, where all the strategies have same capacity costs. Other values remain same: $\mu_{\mathrm{i}}=$ $500, \mathrm{P}_{\mathrm{i}}=80, \mathrm{C}_{\mathrm{i}}=20$ and $\mathrm{S}_{\mathrm{i}}=5$. The results have been tabulated in Appendix A.4. The graphs have been shown in Appendix E. Increase in cost of capacity reduces both capacity and profit in all cases.

In all the cases discussed above, change in correlation has no effect on unmet demand percentage for dedicated as well as flexible plant. However, with highly negatively correlated demand, when
aggregate demand variance becomes negligible, flexible plant has no unmet demand (See Appendix C).

As flexible plant is effective only if there is production postponement, an index called 'PdPPF Index' has been introduced to check the effect of production postponement on flexible plant profit where 'PdPPF' stands for 'Production Postponement effect on Flexible plant'. The index is calculated as below:

$$
\text { PdPPF Index }=\frac{\text { Profit }_{\text {Dedicated Plant, Postponement }}-\text { Profit }_{\text {Dedicated Plant, No Postponement }}}{\text { Profit }_{\text {Flexible Plant }}-\text { Profit }_{\text {Dedicated Plant, No Postponement }}} \times 100 \%
$$

A reduction in PdPPF index with the increase in a particular parameter indicates that the abovementioned effect reduces and suggests that manufacturer can invest more in product flexible technology. Hence, this PdPPF index can also be considered as the proxy of the value of product flexibility. Although, profit decreases with the increase in variance for all strategies, PdPPF index remains unaffected in variance or coefficient of variation; which means, the value of product flexibility has not been affected by the individual level demand uncertainty. However, PdPPF index decreases with the decrease in correlation. With the increase in negative correlation, manufacturer's incentive to invest in product flexibility increases. PdPPF index also decreases with the increase in price differential or with the decrease in marginal cost of capacity. So it can be concluded that the value of product flexibility increases in price differential. Product flexibility becomes more effective when higher price differential or lower marginal cost of capacity has been combined with lower correlation. With the increase in negative correlation, the price differential effect diminishes with increase in negative correlation, but the effect of marginal cost of capacity increases with the increase in negative correlation. The explanations have been given below (For PdPPF Index values see Appendix B.5):
a) With the change in price differential, the total profits of dedicated plant (both postponement and no postponement) strategies have not been affected much. They also remain unaffected with the change in correlation. However, the profit of flexible plant increases with decrease in correlation due to pooling effect. With the increase in price differential, this additional gain from flexibility becomes less effective. In other words, correlation effect acts better in flexible plant when price differential is low. The explanation is simple. With the increase in price differential, the flexible firm increases the option to allocate more of it's resource to the high price product, so that it can always
meet the demand of high price product, even at the cost of low price product. As a result in case of high correlation also, flexible firm profit is more compared to dedicated plant with postponement. As a result, for different price differentials, PdPPF Index converges with decrease in correlation. The same can be observed in graph also (See Appendix E, Graph 6(a)).
b) With the reduction in correlation, PdPPF Index decreases irrespective of the price of the product. However, with very high correlation (0.99) they converge at value $=1$. The reason is quite intuitive. At 0.99 correlation value, there is no additional gain from flexible plant over dedicated plant with postponement. So the optimal profit in both cases remains same and the PdPPF Index value becomes unity. With the change in correlation the optimal profit in dedicated strategies do not change, but the profit of flexible plant increases due to pooling effect. Hence, PdPPF Index decreases. However, with the reduction in product price, this additional gain from flexibility becomes less effective (with low price product the flexible plant profit range reduces). In other words, correlation effect acts better in flexible plant when prices of the products are high. But, at the same time, with the decrease in price the extra benefit of postponement reduces as the cost of understocking reduces and capacity has been maintained at lower side. Hence, the difference between profits in dedicated plant strategies reduces. As a result with the decrease in correlation PdPPF Index diverges. The same can be observed in graph also (See Appendix E, Graph 6(b)).
c) In case of change in capacity cost, the structure of the graph and explanation on PdPPF Index is same as the effect of change in price. The same can be observed in graph also (See Appendix E, Graph 6(c)).

## 5. Service level constraint in multi product case:

In today's customer oriented business, maximizing profit is not the only target for firms. They also need to consider the service level as a satisfying objective. Here, service level means the expected number of cases where the demand has been met. Maximizing expected profit being the main objective of the firm, service level objective has been taken as constraint to the models. The aggregate service level has been calculated by averaging individual service levels, based on the assumption that same cost of stock-out occasions for products.

### 5.1. Mixed Integer Models for Satisfying Aggregate Service Level:

When constraints have been added for satisfying service level in models presented in section 3.2.2 one can go for the following argument. Given $\mathrm{A}=$ a large number, $\mathrm{I}=$ binary variable, $\mathrm{D}=$ demand of product, $Z=$ Sales level, if $A * I \geq D-Z$, then

$$
\begin{aligned}
& \mathrm{D}-\mathrm{Z}>0 \rightarrow \mathrm{I}=1 \\
& \mathrm{D}-\mathrm{Z}=0 \rightarrow \mathrm{I}=0,1 \\
& \mathrm{D}-\mathrm{Z}<0 \rightarrow \mathrm{I}=0,1
\end{aligned}
$$

Then, if "total I $\leq$ a given value" has been used as a constraint, it will try to assign zero to I values, whenever required. In other words, it will try to make $D-Z \leq 0$. So unmet demand instances will be reduced upto the required level.

Multi Product, Dedicated Plants, No Production Postponement (Service level $\geq$ 70\%):
Maximize

$$
\frac{1}{\mathrm{n}} \sum_{\mathrm{j}=1}^{\mathrm{n}} \sum_{\mathrm{i}=1}^{\mathrm{m}}\left[\left(\mathrm{P}_{\mathrm{i}}-\mathrm{S}_{\mathrm{i}}\right) \mathrm{Z}_{\mathrm{ij}}\right]-\sum_{\mathrm{i}=1}^{\mathrm{m}}\left(\mathrm{C}_{\text {Strategy }} 1+\mathrm{C}_{\mathrm{i}}-\mathrm{S}_{\mathrm{i}}\right) \mathrm{K}_{\mathrm{i}}
$$

Subject to:

$$
\begin{array}{ll}
\mathrm{Z}_{\mathrm{ij}} \leq \mathrm{d}_{\mathrm{ij}} & \forall \mathrm{i}, \mathrm{j} \\
\mathrm{Z}_{\mathrm{ij}}-\mathrm{K}_{\mathrm{i}} \leq 0 & \forall \mathrm{i}, \mathrm{j} \\
\mathrm{~d}_{\mathrm{ij}}-\mathrm{Z}_{\mathrm{ij}}-\mathrm{A} \times \mathrm{I}_{\mathrm{ij}} \leq 0 & \forall \mathrm{i}, \mathrm{j} \\
\sum_{\mathrm{ij}=1}^{\mathrm{n}} \sum_{\mathrm{i}=1}^{\mathrm{m}} \mathrm{I}_{\mathrm{ij}} \leq 0.3 \mathrm{mn} & \\
\mathrm{I}_{\mathrm{ij}} \text { binary } & \forall \mathrm{i}, \mathrm{j} \\
\mathrm{Z}_{\mathrm{ij}}, \mathrm{~K}_{\mathrm{i}} \geq 0 & \forall \mathrm{i}, \mathrm{j} \\
\mathrm{~A}=\text { Big positive number }
\end{array}
$$

Multi Product, Dedicated Plants, Production Postponement (Service level $\geq \mathbf{9 0 \%}$ ):
Maximize $\quad \frac{1}{n} \sum_{\mathrm{j}=1}^{\mathrm{n}} \sum_{\mathrm{i}=1}^{\mathrm{m}}\left[\left(\mathrm{P}_{\mathrm{i}}-\mathrm{C}_{\mathrm{i}}\right) \mathrm{M}_{\mathrm{ij}}\right]-\mathrm{C}_{\text {Strategy }}{ }_{2} \sum_{\mathrm{i}=1}^{\mathrm{m}} \mathrm{K}_{\mathrm{i}}$
Subject to:

$$
\begin{array}{ll}
\mathrm{M}_{\mathrm{ij}} \leq \mathrm{d}_{\mathrm{ij}} & \forall \mathrm{i}, \mathrm{j} \\
\mathrm{M}_{\mathrm{ij}}-\mathrm{K}_{\mathrm{i}} \leq 0 & \forall \mathrm{i}, \mathrm{j} \\
\mathrm{~d}_{\mathrm{ij}}-\mathrm{M}_{\mathrm{ij}}-\mathrm{A} \times \mathrm{I}_{\mathrm{ij}} \leq 0 & \forall \mathrm{i}, \mathrm{j} \\
\sum_{\mathrm{j}=1}^{\mathrm{n}} \sum_{\mathrm{i}=1}^{\mathrm{m}} \mathrm{I}_{\mathrm{ij}} \leq 0.1 \mathrm{mn} & \\
\mathrm{I}_{\mathrm{ij}} \text { binary } & \forall \mathrm{i}, \mathrm{j} \\
\mathrm{M}_{\mathrm{ij}}, \mathrm{~K}_{\mathrm{i}} \geq 0 & \forall \mathrm{i}, \mathrm{j}
\end{array}
$$

$\mathrm{A}=\mathrm{Big}$ positive number

Multi Product, Flexible Plant, Production Postponement (Service level $\mathbf{\geq 9 0 \%}$ ):
Variable $\quad \mathrm{M}_{\mathrm{ij}} \geq 0 \quad \forall \mathrm{i}, \mathrm{j} ; \quad \mathrm{K} \geq 0 ; \quad \mathrm{I}_{\mathrm{ij}}$ binary $\forall \mathrm{i}, \mathrm{j}$
Maximize $\quad \frac{1}{n} \sum_{\mathrm{j}=1}^{\mathrm{n}} \sum_{\mathrm{i}=1}^{\mathrm{m}}\left[\left(\mathrm{P}_{\mathrm{i}}-\mathrm{C}_{\mathrm{i}}\right) \mathrm{M}_{\mathrm{ij}}\right]-\mathrm{C}_{\text {Strategy }}{ }_{3} \mathrm{~K}$

Subject to:

$$
\begin{array}{ll}
\mathrm{M}_{\mathrm{ij}} \leq \mathrm{d}_{\mathrm{ij}} & \forall \mathrm{i}, \mathrm{j} \\
\sum_{\mathrm{i}=1}^{\mathrm{m}} \mathrm{M}_{\mathrm{ij}}-\mathrm{K}_{\mathrm{i}} \leq 0 & \forall \mathrm{i}, \mathrm{j} \\
\mathrm{~d}_{\mathrm{ij}}-\mathrm{M}_{\mathrm{ij}}-\mathrm{A} \times \mathrm{I}_{\mathrm{ij}} \leq 0 & \forall \mathrm{i}, \mathrm{j} \\
\sum_{\mathrm{j}=1}^{\mathrm{n}=1} \sum_{\mathrm{i}=1}^{\mathrm{m}} \mathrm{I}_{\mathrm{ij}} \leq 0.1 \mathrm{mn} & \\
\mathrm{I}_{\mathrm{ij}} \text { binary } & \forall \mathrm{i}, \mathrm{j} \\
\mathrm{M}_{\mathrm{ij}}, \mathrm{~K}_{\mathrm{i}} \geq 0 & \forall \mathrm{i}, \mathrm{j} \\
\mathrm{~A}=\text { Big positive number } &
\end{array}
$$

When one goes for satisfying individual service level only fourth constraint changes as below:

$$
\begin{array}{ll}
\sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{I}_{\mathrm{ij}} \leq 0.3 \mathrm{n} & \forall \mathrm{i}(\text { When required service level } \geq 70 \%) \text { and } \\
\sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{I}_{\mathrm{ij}} \leq 0.1 \mathrm{n} & \forall \mathrm{i}(\text { When required service level } \geq 90 \%)
\end{array}
$$

The problem with MIP models discussed above is that in many cases it can not perform with more than 100 demand data sets. So alternate approach has been adopted, which has been discussed next.

### 5.2. Simulation Diagram for Checking Required Service Level:



### 5.3. Results and Findings:

To compare the results with section 4.3 same parameter values have been kept. The observations have been discussed below (For PdPPF Index values with SLC see Appendix B.5):

1) Observations regarding PdPPF Index: PdPPF decreases with decrease in correlation in both SLC and without SLC. At same correlation level, with SLC, PdPPF increases with decrease in price differential, increase in price and decrease in capacity cost. However, without SLC PdPPF values converges at highly negative correlation when change in price differential happens, and it converges at highly positive correlation when change in price or change in capacity cost happens. On the other hand, when service level constraint has been imposed, PdPPF Index diverges with decrease in correlation for different price differential levels as well as for different price levels. However, with different capacity cost PdPPF Index remains parallel. The explanations have been given below:
a) As the service level constraints in any of the price differential levels are not violated much, the differences between profits in dedicated plant strategies are alike in this case compared to the cases without SLC. Hence, when operated under SLC, for different price differential levels, PdPPF Index converges with decrease in correlation. The same can be observed in graph also (See Appendix E, Graph 7(a)).
b) With the decrease in the product price, rate of decrease in Unmet Demand Percentage (hence, UD \%) is more in case of dedicated plant with postponement compared to flexible plant. On the other hand, dedicated plant with no postponement has been affected most with service level constraint. As a result, the less the product price, the more profit reduction happens for dedicated plant strategies to fulfill the service level requirement. When price values are 80 and 55, flexible plant service levels are not violated and, in case of price $=40$, a small reduction in profit happens to maintain the service level. Hence, even with correlation $=0.99$, the profits between dedicated plant with postponement and flexible plant differs and this difference increases with decrease in product price. However, with the decrease in correlation, dedicated plant (both postponement and no postponement) profits with SLC remain same as optimal profit (without SLC) and UD \% do not change in correlation for dedicated plants. As with the reduction in product price, additional gain from flexibility becomes less effective, the denominator of the PdPPF Index shows less increase with the reduction in correlation when product price is low. On the other hand, the reduction in differences between profits in dedicated plant strategies are less compared to the cases without SLC. As a result, as product price decreases, the PdPPF Index decreases less with the reduction in correlation. In other words, when
operated under SLC, for different product prices, PdPPF Index diverges with increase in correlation. The same can be observed in graph also (See Appendix E, Graph 7(b)).
c) In case of change in capacity cost, the reason for non convergence at correlation $=0.99$ is same as the effect of price change. However, as the service level constraints in any of the capacity cost levels are not violated much, the reduction in differences between profits in dedicated plant strategies are alike in this case compared to the cases without SLC. Hence, when operated under SLC, for different capacity cost levels, PdPPF Index remains parallel with the change in correlation. The same can be observed in graph also (See Appendix E, Graph 7(c)).
2) Observations regarding reduction in profit from imposing Service Level Constraint (SLC):

Reduction in Profit Percentage $=$ RP $\%=[($ Profit with SLC - Profit without SLC $) \times 100 /$ Profit without SLC]. More negative value of reduction in profit means more decrease in profit with SLC (See Appendix D).
a) In case of dedicated plant with postponement, correlation has no effect on RP \%. The RP \% decreases with correlation in case of flexible plant.
b) With increase in variance and decrease in price of products, RP \% decreases for both dedicated and flexible plant. However the effect is less in case of flexible plant.
c) Change in price differential or change in capacity cost has little effect on the RP $\%$.

## 6. Conclusion:

This paper deals with the optimal capacity planning under demand uncertainty. Simulated data based optimization procedure used in this paper helped to solve the multi-product two stage stochastic linear programming which is otherwise analytically intractable. The effect of production postponement increases profit, but flexible plant may generate higher profit compared to dedicated plants depending on the cost of flexible technology. For dedicated plant strategies, profit and capacity remains unaffected with the change in correlation coefficient. However, with the reduction in correlation flexible plant optimal profit increases and capacity decreases. On the other hand, change in demand differential or price differential has no effect on aggregate capacity or profit for any of the three strategies. But profit reduces with the reduction in price or increase in capacity cost.

The PdPPF index introduced in the paper is helpful in deciding on choice between dedicated and product flexible plant. The value of flexibility has not been affected by the change in individual demand uncertainty, but effectiveness of product flexibility increases with negatively correlated demands. The change in demand differential has no effect on aggregate capacity or aggregate profit level in any of the three strategies, however, increase in price differential or decrease in marginal cost of capacity increases the value of flexibility.
Change in correlation has no effect on unmet demand percentage for dedicated as well as flexible plant. However, with highly negatively correlated demand, when aggregate demand variance becomes negligible, flexible plant has no unmet demand. On the other hand, when service level constraint has been imposed, PdPPF Index diverges with decrease in correlation for different price differential levels as well as for different price levels. However, with different capacity cost PdPPF Index remains parallel.
The main contribution of this paper is threefold. First, the procedure of finding optimal profit and capacity has been developed for dedicated and flexible plant facing multivariate correlated demand distribution, which is otherwise analytically intractable. Second, PdPPF Index has been introduced as a proxy for value of product flexibility to find several meaningful insights based on the changes in various parameters. Third, the service level objective has been added to look into the problem from multi-objective angle.

Several extensions to the models are possible. We are currently working on price dependent demand scenario to accommodate price postponement into our model and observe the effect of product substitutability. Another extension on which we are also working is to extend the models for multi-period scenario.

## References:

[1] E. K. Bish and Q. Wang, "Optimal investment strategies for flexible resources, considering pricing and correlated demands," Operations Research, vol. 52, pp. 954-964, 2004.
[2] G. D. Eppen, R. K. Martin, and L. Schrage "A Scenario Approach to Capacity Planning," Operations Research, vol. 37, pp. 517-527, 1989.
[3] C. H. Fine and R. M. Freund, "Optimal investment in product-flexible manufacturing capacity," Management Science, vol. 36, pp. 449-467, 1990.
[4] W. C. Jordan and S. C. Graves, "Principles on the benefits of manufacturing process
flexibility," Management Science, vol. 41, pp.577-94, 1999.
[5] G. Perrone, M. Amicob, G. L. Nigrob, and S. N. L. Diegab, "Long term capacity decisions in uncertain markets for advanced manufacturing systems incorporating scope economies," European Journal of Operational Research, vol. 143, pp. 125-137, 2002.
[6] J. A. Van Mieghem, "Investment strategies for flexible resources," Management Science, vol. 44, pp. 1071-1078, 1998.
[7] J. A. Van Mieghem and M. Dada, "Price versus production postponement: Capacity and competition," Management Science, vol. 45, pp. 1631-1649, 1999.
[8] H. M. Wagner, Principles of Operations Research, 2nd ed.: PHI, 1999.
[9] B. Yang, N. D. Burns, and C. J. Backhouse, "Management of uncertainty through postponement," International Journal of Production Research, vol. 42, pp. 1049-1064, 2004.

## Appendix A: Results

## Appendix A.1:

Parameter values: Price $=80$, Cost $=20$, Salvage value $=5$ for each of the three products; Marginal cost of capacity $=10$ for any type of plant $\sigma / \mu=\{0.05,0.1,0.15,0.2\}, \sigma^{2}=\{2000,4000,6000,8000,10000\}$
$\rightarrow$ Horizontally \{Capacity 1, Capacity 2, Capacity 3, Profit 1, Profit 2, Profit 3\}

|  |  |  |  |  |  |  |  |  |  |  |  |  | an | mand |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Change in $\sigma / \mu, \rho=0.99$ |  |  |  |  |  | Change in $\sigma / \mu, \rho=0.99$ |  |  |  |  |  | Change in $\boldsymbol{\sigma} / \boldsymbol{\mu}, \rho=0.99$ |  |  |  |  |  |
| 1532 |  | 157 | 72965 | 73891 | 73 | 1532 | 1572 | 157 | 7289 | 73822 | 73825 | 1531 | 1573 | 157 |  | 3823 | 73826 |
| 1562 | 1642 | 164 | 70828 | 72661 | 72668 | 15 | 1648 | 1648 | 71000 | 72845 | 72853 | 1565 | 1643 | 1642 | 70911 | 72751 | 72 |
| 15 | 17191 | 1719 | 68973 | 71741 | 7175 | 1597 | 1715 | 171 | 68872 | 71621 | 7163 | 1601 | 1721 | 1720 | 69028 | 71794 | 71 |
| 16 | 179 | 1777 | 66731 | 70355 | 7037 | 163 | 1791 | 1792 | 66986 | 70656 | 706 | 8 | 1789 | 1787 | 33779 | 70464 | 70 |
| Change in $\sigma^{2}, \rho=0.99$ |  |  |  |  |  | Change in $\sigma^{2}, \rho=0.99$ |  |  |  |  |  | Change in $\boldsymbol{\sigma}^{\mathbf{2}}, \boldsymbol{\rho}=\mathbf{0 . 9 9}$ |  |  |  |  |  |
|  |  | 163 |  | 73039 |  |  | 628 | 1627 | 77133 | 72970 |  |  | 630 |  | , | 2996 |  |
| 1581 | 83 | 1682 | 69781 | 72106 | 72 | 1579 | 1682 | 1682 | 2696 | 720 | 72 | 1580 | 1681 | 1681 | 69795 | 72103 | 72112 |
| 1596 | 176 | 17 | 68551 | 71 | 71 | 1604 | 1731 | 1731 | 1686 | 71578 | 71 | 1600 | 6 | 1726 | 68722 | 71566 | 71577 |
| 1619 | 62 | 176 | 67742 | 71 | 71 | 1618 | 1765 | 6 | 67 | 71 | 71045 | 1614 | 59 | 1759 | 32 | 83 | 71096 |
|  |  | 17 | 66 | 70334 | 70349 | 1633 | 1793 | 析 | 66 | 70553 | 70569 | 1627 | 1789 | 1787 | 66778 | 70450 | 70465 |
| Change in $\sigma / \mu, \rho=0.5$ |  |  |  |  |  | Change in $\sigma / \mu, \rho=0.5$ |  |  |  |  |  | Change in $\sigma / \mu, \rho=0.5$ |  |  |  |  |  |
|  |  |  |  |  |  |  | 572 | 1560 |  | 73847 |  |  | 571 | 1559 |  |  |  |
|  | 1645 | 16 | 70929 | 72771 |  |  | 1646 |  | 71019 | 72856 |  |  | 4 | 1622 | 70942 |  |  |
|  | 178 | 16 |  |  |  |  | 1716 | 1676 | 6903 |  |  |  | 1716 | 1680 | - |  |  |
|  |  | 173 |  |  |  |  |  |  | 669 | 70625 |  |  |  |  |  |  |  |
| Change in $\sigma^{2}, \rho=0.5$ |  |  |  |  |  | Change in $\boldsymbol{\sigma}^{\mathbf{2}}, \boldsymbol{\rho}=0.5$ |  |  |  |  |  | Change in $\boldsymbol{\sigma}^{2}, \rho=0.5$ |  |  |  |  |  |
|  | C28 | 1606 | 71311 | 72950 |  |  | 1632 | 1608 | 71360 | 73026 |  |  | 1630 | 1606 | 71340 | 72991 |  |
|  | 168 | 1650 | 69785 | 72123 | 726 | 15 | 1683 | 1648 | 69934 | 72238 |  | 1582 | 1684 | 1650 | 69872 | 72196 | 72720 |
|  | 72 | 168 | 68577 | 71428 | 72 | 1596 | 1723 | 1681 | 68523 | 71377 | 72027 | 1600 | 1725 | 1684 | 68617 | 71485 | 72124 |
|  | 17541 | 1706 | 67670 | 70935 | 71 |  | 1761 | 1710 | 67684 | 7098 |  | 1612 | 1756 | 1707 | 67619 | 70904 | 71643 |
|  |  | 1734 | 66855 | 70522 |  |  | 1792 |  |  |  |  |  |  |  | 66939 |  |  |
| Change in $\sigma / \mu, \rho=0.25$ |  |  |  |  |  | Change in $\sigma / \mu, \rho=0.25$ |  |  |  |  |  | Change in $\sigma / \mu, \rho=0.25$ |  |  |  |  |  |
|  |  | 1551 |  |  |  |  | 1571 | 1550 | 72909 | 73826 |  |  | 1572 | 1554 | 73015 | 73933 |  |
|  | 6 | 1604 | 70925 | 72773 | 73 | 1562 | 1642 | 1600 | 70826 | 72660 | 73314 | 62 | 1642 | 1602 | 70831 | 72667 | 732 |
|  | 1717 | 16 | 68920 | 71671 | 72 | 1593 | 1714 | 1650 | 68659 | 71429 | 72 | 1595 | 1714 | 1657 | 68785 | 71545 | 72438 |
|  |  | 1706 | 66824 | 70515 |  |  | 1793 | 1705 | 67033 | 770721 |  |  | 1792 | 1716 | 66763 | 70451 | 71643 |
| Change in $\sigma^{2}, \rho=0.25$ |  |  |  |  |  | Change in $\sigma^{2}, \rho=0.25$ |  |  |  |  |  | Change in $\sigma^{2}, \rho=0.25$ |  |  |  |  |  |
| 1557 | 6291 | 1590 | 71290 | 72938 | 73530 | 1558 | 163 | 1592 | 71379 | 73022 | 73 | 1558 | 1629 | 1593 | 71366 | 73009 | 73584 |
| 1583 | 16851 | 163 | 69933 | 7226 | 73 | 15 | 168 | 1630 | 69785 | 7213 | 72 | 1580 | 1680 | 1629 | 69799 | 72111 | 72929 |
|  | 1726 | 166 | 68722 | 71583 | 725 | 15 | 1722 | 1656 | 68658 | 7150 | 725 | 1598 | 1722 | 1655 | 68712 | 71541 | 72600 |
| 16 | 1763 | 1687 | 67793 | 71094 | 72 | 16 | 1760 | 1686 | 67725 | 71027 | 72 | 1615 | 1760 | 1685 | 67691 | 70989 | 72 |
|  |  | 1706 | 66824 | 70515 |  |  | 1792 | 1708 | 66842 | 70553 |  |  | 1786 | 170 | 66660 | 70351 |  |
| Change in $\sigma / \mu, \rho=0$ |  |  |  |  |  | Change in $\sigma / \mu, \rho=0$ |  |  |  |  |  | Change in $\sigma / \mu, \rho=0$ |  |  |  |  |  |
|  | 731 | 1542 | 72979 | 73906 |  | 1532 | 1572 | 1543 | 72973 | 73893 | 74355 | 1531 | 1573 | 1545 | 72953 | 73872 | 74294 |
|  | 16 | 158 | 70 | 72 | 737 | 1563 | 1644 | 15 | 70 | 72 |  |  | 1643 | 15 | 7085 | 72700 | 3 |
| 159 | 1718 | 1624 | 68838 | 71598 | 73 | 1 | 1718 | 1627 | 68915 | 7167 | 73 |  | 171 | 1639 | 68856 | 71628 | 72883 |
|  |  | 1666 | 66631 | 70340 |  |  | 1792 | 1670 | 66879 | 70575 |  |  | 179 | 1685 | 66915 | 70595 |  |
| Change in $\boldsymbol{\sigma}^{2}, \boldsymbol{\rho}=0$ |  |  |  |  |  | Change in $\sigma^{2}, \rho=0$ |  |  |  |  |  | Change in $\sigma^{2}, \rho=0$ |  |  |  |  |  |
|  | 16301 | 1575 | 713 | 72 |  |  | 1632 | 1577 | 71 | 73 |  |  | 1629 | 1575 | 713 | 298 |  |
| 15 | 16841 | 1607 | 69872 | 72207 | 73 | 15 | 168 | 1605 | 69845 | 7218 | 73 | 1581 | 1684 | 1606 | 69827 | 72153 | 仡 |
| 15 | 1722 | 1627 | 68533 | 71380 | 72 | 15 | 1726 | 1629 | 68635 | 7149 | 729 | 1600 | 1724 | 1630 | 6864 | 71509 | 729 |
| 161 | 17601 | 1648 | 67688 | 70993 | 7270 | 161 | 1760 | 1649 | 67706 | 70993 | 7268 | 161 | 1762 | 1652 | 67707 | 71018 | 727 |
| 1626 | 1791 | 1666 | 66631 | 70340 | 7222 | 1626 | 1786 | 1663 | 66725 | 70395 | 7228 | 1627 | 1791 | 1665 | 66705 | 70407 | 722 |


| Change in $\sigma / \mu, \rho=-\mathbf{0 . 2 5}$ |  |  |  |  |  | Change in $\sigma / \mu, \rho=-\mathbf{0 . 2 5}$ |  |  |  |  |  | Change in $\sigma / \mu, \rho=-0.25$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1531 | 1573 | 1529 | 72933 | 73858 | 74 | 1532 | 1573 | 1531 | 72974 | 73897 | 74547 | 1532 | 1572 | 153 | 729 | 73864 | 74439 |
|  | 16 | 15 | 70 | 72799 | 74145 | 1563 | 1645 | 1560 | 70893 | 72744 | 74047 | 1565 | 1645 | 156 | 70982 | 72813 | 73 |
|  | 171 | 158 | 68 | 71608 | 7358 | 1597 | 1720 | 1591 | 68848 | 71634 | 73619 | 1596 | 1716 | 1602 | 68795 | 71577 | 73 |
|  |  |  | 669 | 70563 | 73195 | 1628 | 1788 | 162 | 667 | 70347 | 7303 | 1629 | 1788 | 1640 | 6684 | 70511 | 72 |
| Change in $\sigma^{2}, \rho=-0.25$ |  |  |  |  |  | Change in $\sigma^{2}, \rho=-0.25$ |  |  |  |  |  | Change in $\sigma^{2}, \rho=-0.25$ |  |  |  |  |  |
|  | 1631 | 1553 | 71330 | 72988 |  |  | 1630 | 1553 | 71268 | 72940 |  |  | 1629 | 1553 | 71349 | 72996 |  |
| 1581 | 16 | 15 | 69 | 72 | 73832 | 1580 | 1683 | 15 | 69 | 72 | 73819 | 1582 | 1684 | 1574 | 69855 | 72188 | 73868 |
|  | 172 | 15 | 68 | 71 | 73487 | 1602 | 1724 | 1592 | 68 | , | 73663 | 1601 | , | 15 | 析 | 71556 | 73628 |
|  | 175 | 16 | 6766 | 709 | 73 | 1615 | 1758 | 1607 | 67 | 71014 | 73376 | 1612 | 17 | 16 | 67680 | 70947 | 73305 |
|  | 1788 | 1617 | 66910 | 70563 |  |  | 1791 | 1618 | 66781 |  | 73179 |  | 17 | 16 | 66826 | 0504 |  |
| Change in $\sigma / \mu, \rho=-0.5$ |  |  |  |  |  | Change in $\sigma / \mu, \rho=-0.5$ |  |  |  |  |  | Change in $\sigma / \mu, \rho=-0.5$ |  |  |  |  |  |
| 1532 | 1573 | 1500 | 72941 | 73867 |  | 1532 | 1572 | 1508 | 729 | 73876 |  | 1531 | 1572 | 1520 | 129 | 73850 |  |
|  | 16 | 15 | 70 | 72765 |  | 1565 | 1643 | 15 | 70 | 72755 |  |  | 16 | 15 | 70881 | 72720 |  |
|  | 171 | 15 | 68840 | 71 |  |  | 1718 | 15 | 68 | 71 |  |  | 17 | 1562 | 68 |  |  |
|  | 1786 | 1500 | 66868 | 70523 |  |  | 1788 | 1533 | 66811 | 70485 |  |  | 17 | 1584 | 668 | 6 |  |
| Change in $\boldsymbol{\sigma}^{2}, \rho=-0.5$ |  |  |  |  |  | Change in $\sigma^{2}, \rho=-0.5$ |  |  |  |  |  | Change in $\boldsymbol{\sigma}^{2}, \rho=-0.5$ |  |  |  |  |  |
|  | 1629 | 1500 | 71339 | 72988 |  |  | C30 | 1500 | 71335 | 72986 |  |  | 1630 | 1500 | 71324 | 72978 |  |
|  | 16 | 15 | 6979 | 72 | 75 | 1582 | 1 | 1500 | 69822 | 721 | 75000 | 1580 | 168 | 1500 | 69840 | 72158 | 75000 |
|  | 172 | 15 | 68645 | 7152 | 750 | 1601 | 1725 | 1500 | 68688 | 7153 | 75 |  | 1722 | 1500 | 6871 | 7153 | 75000 |
| 16 | 1761 | 150 | 67655 | 70961 | 75000 | 1614 | 1758 | 1500 | 67745 | 71015 | 75000 | 1616 | 1762 | 1500 | 67625 | 70957 | 500 |
| 1628 | 1786 | 150 | 66868 | 70523 | 75000 | 1630 | 1790 | 1500 | 66795 | 70487 | 75000 | 162 | 1790 | 1500 | 66839 | 70509 | 750 |

## Appendix A.2:

Parameter values: Mean demand $=500$, Cost $=20$, Salvage value $=5, \sigma^{2}=10000$ for each of the three products; Marginal cost of capacity $=10$ for any type of plant; $\rho=\{0.99,0.5,0.25,0,-$ $0.25,-0.5\}$
$\rightarrow$ Horizontally \{Capacity 1, Capacity 2, Capacity 3, Profit 1, Profit 2, Profit 3\}

| Price $=\{80,80,80\}$ |  |  |  |  |  | Price $=\{60,80,100\}$ |  |  |  |  |  | Price $=\{40,80,120\}$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Change in $\rho$ |  |  |  |  |  | Change in $\rho$ |  |  |  |  |  | Change in $\rho$ |  |  |  |  |  |
| 1623 | 1783 | 1782 | 66686 | 70334 | 70349 | 1614 | 1775 | 1699 | 66687 | 70314 | 70929 | 1563 | 1725 | 1500 | 67613 | 70869 | 72 |
| 1629 | 1787 | 1734 | 66855 | 70522 | 71370 | 1611 | 1772 | 1659 | 66897 | 70443 | 71727 | 1566 | 1726 | 1501 | 67807 | 71060 | 73160 |
| 1628 | 1793 | 1706 | 66824 | 70515 | 71858 | 1617 | 1776 | 1640 | 66992 | 70580 | 72301 | 1566 | 1728 | 1502 | 67670 | 70938 | 73284 |
| 1626 | 1791 | 1666 | 66631 | 70340 | 72223 | 1619 | 1779 | 1618 | 67088 | 70674 | 72894 | 1566 | 1723 | 1501 | 67700 | 70945 | 73619 |
| 1629 | 1788 | 1617 | 66910 | 70563 | 73195 | 1616 | 1778 | 1580 | 66923 | 70511 | 73373 | 1565 | 1724 | 1500 | 67822 | 71077 | 74116 |
| 1628 | 1786 | 1500 | 66868 | 70523 | 75000 | 1619 | 1782 | 1500 | 66965 | 70589 | 75031 | 1566 | 1727 | 1500 | 67596 | 70870 | 74970 |

## Appendix A.3:

Parameter values: Mean demand $=500$, Cost $=20$, Salvage value $=5$ for each of the three products; Marginal cost of capacity $=10$ for any type of plant; $\sigma^{2}=\{2000,4000,6000,8000$, 10000\}
$\rightarrow$ Horizontally \{Capacity 1, Capacity 2, Capacity 3, Profit 1, Profit 2, Profit 3\}

| Price $=\{80,80,80\}$ |  |  |  |  |  | Price $=\{55,55,55\}$ |  |  |  |  |  | Price $=\{40,40,40\}$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Change in $\sigma^{2}, \rho=0.99$ |  |  |  |  |  | Change in $\sigma^{2}, \rho=0.99$ |  |  |  |  |  | Change in $\sigma^{2}, \rho=0.99$ |  |  |  |  |  |
| 1558 | 1631 | 1631 | 71387 | 73039 | 73045 | 1501 | 1576 | 1576 | 34802 | 35898 | 35903 | 1425 | 1501 | 1501 | 13401 | 13932 |  |
| 1581 | 1683 | 1682 | 69781 | 72106 | 72116 | 1500 | 1607 | 1607 | 33769 | 35288 | 35295 | 1391 | 1500 | 1500 | 12714 | 13465 | 13470 |
| 1596 | 1726 | 1724 | 68551 | 71424 | 71437 | 1498 | 1630 | 1630 | 32894 | 34737 | 34747 | 1368 | 1496 | 1495 | 12226 | 13130 | 13136 |
| 1619 | 1762 | 1761 | 67742 | 71054 | 71069 | 1500 | 1652 | 1652 | 32174 | 34325 | 34336 | 1349 | 1497 | 1498 | 11830 | 12867 | 12875 |
| 1623 | 1783 | 1782 | 66686 | 70334 | 70349 | 1500 | 1672 | 1671 | 31474 | 33922 | 33934 | 1328 | 1499 | 1499 | 11431 | 12596 | 2603 |


| Change in $\sigma^{2}, \rho=0.5$ |  |  |  |  |  | Change in $\sigma^{2}, \rho=0.5$ |  |  |  |  |  | Change in $\sigma^{2}, \rho=0.5$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1557 | 1628 | 1606 | 7131 | 72950 | 7331 | 1502 | 1577 | 1563 | 34840 | 35930 | 3622 | 14 | 1500 | 1500 | 13397 | 13925 |  |
| 1581 | 1685 | 1650 | 69785 | 72123 | 726 | 15 | 1608 | 1587 | 33718 | 35253 | 3566 | 1391 | 1497 | 1500 | 12733 | 13 | 13753 |
| 1598 | 17 | 168 | 68 | 71 | 72 | 15 | 1634 | 1610 | 329 | 34783 | 35 | 1366 | 8 | 8 | 12235 | 13 | 13476 |
| 1612 | 17 | 1706 | 6767 | 70 | 71 | 15 | 1653 | 1626 | 3223 | 3438 | 34 | 1351 | 2 | 2 | 11825 | 12877 | 3275 |
|  | 1787 | 1734 |  | 70522 | 71370 | 1502 | 1672 | 16 | 31 | 33996 | 34 |  | 1502 | 1499 | 11475 | 12647 | 3089 |
| Change in $\sigma^{2}, \rho=0.25$ |  |  |  |  |  | Change in $\sigma^{2}, \rho=0.25$ |  |  |  |  |  | Change in $\sigma^{2}, \rho=0.25$ |  |  |  |  |  |
|  | C29 | 1590 | 7129 |  |  |  | 577 | 1554 | - |  |  |  |  | 1499 | 13383 | 13915 |  |
|  | 168 | 16 | 69933 | 7226 |  |  | 1606 | 1572 | 33637 | 35 |  |  | 1499 | 1499 | 9 | 13501 |  |
|  | 17 | 16 | 68 | 71583 |  |  |  | 1593 | 32 | 34 |  |  |  | 1502 |  | 13170 |  |
|  | 1763 | 168 | 6779 | , | 72252 |  | 1650 | 1606 | 320 | 34 |  |  | 1503 | 1503 | 11821 | 12 |  |
|  | 1793 | 1706 | 6682 | -051 |  |  | 1669 | 1622 | 31511 | 3392 |  |  | , | 1502 | 11495 | 1265 |  |
| Change in $\boldsymbol{\sigma}^{\mathbf{2}}, \boldsymbol{\rho}=0$ |  |  |  |  |  | Change in $\sigma^{2}, \rho=0$ |  |  |  |  |  | Change in $\sigma^{2}, \rho=0$ |  |  |  |  |  |
|  | 1630 | 1575 | 71319 | 7296 |  |  | 76 | 1544 | 34845 | 3592 |  |  | 500 | 1499 | 13411 | 1393 |  |
|  | 168 | 1607 | 69872 | 722 |  | 14 | 1607 | 1562 | 3368 | 3522 | 3617 |  | 1499 | 1500 | 12742 | 1348 |  |
|  | 172 | 1627 | 6853 | 7138 | 7286 | 149 | 1631 | 1575 | 32802 | 34681 | 35875 |  | 1498 | 1497 | 1219 | 131 |  |
|  | 176 | 1648 | 6768 | 7099 | 72706 | 149 | 1653 | 1586 | 3209 | 3427 | 3563 |  | 1499 | 1498 | 11786 | 128 |  |
|  | 17 | 1666 | 666 | 仡 |  |  | 1669 | 1601 | 31586 | 33993 | 35491 |  | 1502 | 501 |  | 12626 |  |
| Change in $\sigma^{2}, \rho=-0.25$ |  |  |  |  |  | Change in $\sigma^{2}, \rho=-0.25$ |  |  |  |  |  | Change in $\sigma^{2}, \rho=-0.25$ |  |  |  |  |  |
|  | 16 | 15 | 71330 |  |  |  | 15 | 1531 | 348 | 35 |  | 1424 | 1500 | 1500 | P07 | 13932 | 14563 |
|  | 16 | 15 | 698 | 721 |  |  | 16 | 154 | 337 | 35 | 36566 | 13 | 8 | 1498 | 127 | 13 | 14375 |
|  | 172 | 1589 | 6857 | 7143 |  | 14 | 16 | 1552 | 3285 | 34 | 36375 | 13 | 1499 | 1500 | 1223 | 13147 | 14241 |
|  | 175 | 1603 | 676 | 70 |  | 14 | 164 | 156 | 321 | 34 |  | 13 | 1500 | 1500 | 1182 | 12876 | 1412 |
|  | 1788 | 1617 | 66910 | 70563 |  |  | 1671 | 1569 | 31589 | 34000 |  |  | 1500 | 1500 | 11412 | 12601 |  |
| Change in $\sigma^{2}, \rho=-0.5$ |  |  |  |  |  | Change in $\boldsymbol{\sigma}^{2}, \rho=-0.5$ |  |  |  |  |  | Change in $\boldsymbol{\sigma}^{2}, \rho=-0.5$ |  |  |  |  |  |
|  | 1629 | 15 | 7133 |  |  | 15 | 157 | 1500 | 34814 | 35898 | 37 | 1424 | 1499 | 1500 | 13414 | 13935 | 1500 |
|  | 16 | 15 | 69 | 72135 |  | 15 | 1607 | 150 | 3372 | 3524 |  |  | 1499 | 1500 | 1275 | 13492 | 15000 |
| 16 | 172 | 1500 | 6864 | 71521 | 75000 | 15 | 1628 | 1500 | 3289 | 347 | 37500 | 13 | 1499 | 1500 | 12269 | 13169 | 1500 |
| 16 | 1761 | 1500 | 67655 | 70961 | 75000 | 14 | 1648 | 1500 | 32194 | 3432 | 37500 | 13 | 1499 | 1500 | 11788 | 12841 | 1500 |
| 16 | 178 | 150 | 6686 | 70523 | 7500 | 150 | 167 | 1500 | 31460 | 33910 | 375 | 133 | 149 | 1500 | 11442 | 12608 | 50 |

## Appendix A.4:

Parameter values: Mean demand $=500$, Price $=80$, Cost $=20$, Salvage value $=5, \sigma^{2}=10000$ for each of the three products; $\rho=\{0.99,0.5,0.25,0,-0.25,-0.5\}$
$\rightarrow$ Horizontally \{Capacity 1, Capacity 2, Capacity 3, Profit 1, Profit 2, Profit 3\}

| Capacity cost $=5$ |  |  |  |  |  | Capacity cost $=10$ |  |  |  |  |  | Capacity cost $=15$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Change in $\rho$ |  |  |  |  |  | Change in $\rho$ |  |  |  |  |  | Change in $\rho$ |  |  |  |  |  |
| 1681 | 1912 | 1911 | 74632 | 79291 | 79300 | 1623 | 1783 | 1782 | 66686 | 7033 | 70349 | 1579 | 1706 | 1706 | 58809 | 6181 | 61835 |
| 1681 | 1912 | 1833 | 74808 | 79457 | 79951 | 1629 | 1787 | 1734 | 66855 | 70522 | 71370 | 1577 | 1704 | 1668 | 58916 | 61886 | 62920 |
| 1690 | 1922 | 1795 | 75345 | 79997 | 80795 | 1628 | 1793 | 1706 | 66824 | 70515 | 71858 | 1575 | 1698 | 1642 | 58873 | 61819 | 3461 |
| 1691 | 1917 | 1737 | 75171 | 79812 | 81000 | 1626 | 1791 | 1666 | 66631 | 70340 | 72223 | 1577 | 1701 | 1617 | 58839 | 61809 | 64244 |
| 1687 | 1917 | 1661 | 75144 | 79784 | 81439 | 1629 | 1788 | 1617 | 66910 | 70563 | 73195 | 1574 | 1699 | 1579 | 58789 | 61747 | 65146 |
| 1684 | 1907 | 1500 | 75203 | 79763 | 82500 | 1628 | 1786 | 1500 | 66868 | 70523 | 75000 | 1578 | 1701 | 1500 | 58783 | 6176 | 67500 |

## Appendix B: Results with Service Level Constraint

## Appendix B.1:

Parameter values: Price $=80$, Cost $=20$, Salvage value $=5$ for each of the three products;
Marginal cost of capacity $=10$ for any type of plant
$\sigma^{2}=\{2000,4000,6000,8000,10000\}$
$\rightarrow$ Horizontally \{Capacity 1, Capacity 2, Capacity 3, Profit 1, Profit 2, Profit 3\}

|  | Deman | d | 0, | 500\} | Demand $=\{400,500,600\}$ |  |  |  |  |  | Demand $=\{250,500,750\}$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Change in $\sigma^{2}, \rho=0.99$ |  |  |  |  | Change in $\sigma^{2}, \rho=0.99$ |  |  |  |  |  | Change in $\sigma^{2}, \rho=0.99$ |  |  |  |  |  |
| 1589 | 16921 | 1661 | 71277 | 7284872 | 15 | 1686 |  |  | 72794 | 7292 | 1588 |  |  |  |  | 72937 |
| 1608 | 1742 | 仿 | 69797 | 720207203 | 161 | 74 | 1742 | 6960 | 71893 | 71903 | 1612 | 176 | 1680 | 69827 | 71 | 72207 |
| 1625 | 1811 | 1779 | 68396 | 710597120 | 16 | 81 | 787 | 68702 | 71387 | 71530 | 1628 | 1814 | 1723 | 6862 | 7129 | 6 |
| 1646 | 1845 | 1813 | 67799 | 088971013 | 164 | 851 | 1822 | 6751 | 70696 | 70821 | 1645 | 1856 | 1766 | 6753 | 70723 | 70938 |
| 1658 | 1912 | , | 66958 | 7034270583 | 16 | 1904 | 1843 | 66950 | 70293 | 70533 | 16 |  | 1792 | 6671 | 70146 |  |
| Change in $\sigma^{2}, \rho=0.5$ |  |  |  |  | Change in $\sigma^{2}, \rho=0.5$ |  |  |  |  |  | Change in $\sigma^{2}, \rho=0.5$ |  |  |  |  |  |
| 158 | 1690 | 1637 | 71296 | 728557333 |  | 690 | 1638 | 71191 | 72781 | 73 | 158 | 1688 | 1604 | 71264 | 72806 | 73346 |
| 1611 | 1750 | 1678 | 69666 | 7188772543 | 1612 | 1752 | 1680 | 69746 | 71967 | 72623 | 1614 | 1764 | 1651 | 69788 | 71973 | 72712 |
| 1629 | 18151 | 1746 | 68688 | 7134472072 | 1629 | 811 | 1711 | 68548 | 71222 | 72030 | 1633 | 1817 | 1686 | 68682 | 71367 | 7226 |
| 1641 | 18441 | 1766 | 67399 | 7053471363 | 1650 | 852 | 1744 | 67814 | 70949 | 71858 | 1644 | 1845 | 1706 | 67451 | 70590 | 71516 |
| 1652 | 19071 | 1791 | 66457 | 6986870939 | 1661 | 1902 | 1770 | 66827 | 70273 | 71337 | 16 | 1913 | 1738 | 67023 | 7040 | 8 |
| Change in $\boldsymbol{\sigma}^{\mathbf{2}}, \boldsymbol{\rho}=\mathbf{0 . 2 5}$ |  |  |  |  | Change in $\boldsymbol{\sigma}^{\mathbf{2}}, \rho=0.25$ |  |  |  |  |  | Change in $\sigma^{2}, \rho=0.25$ |  |  |  |  |  |
| 158 | 16901 |  | 71211 | 7277773 |  |  |  |  | 72887 | 73583 | 1586 | 1688 |  |  |  |  |
| 1612 | 17541 | 1660 | 69708 | 7194072898 | 16 | 773 | 1661 | 69725 | 71843 | 7288 | 16 | 1752 | 162 | 69653 | 71881 | 72892 |
| 1632 | 18171 | 1688 | 68644 | 7132572538 | 1629 |  | 1689 | 68483 | 71176 | 72396 | 1632 | 1815 | 1662 | 68645 | 71329 | 72573 |
| 1648 | 1851 | 1714 | 67783 | 7091372269 | 1649 | 1852 | 1715 | 67669 | 70815 | 721 | 1646 |  | 1684 | 67668 | 70792 | 7 |
| 1654 | 19051 | 1761 | 66719 | 7009671621 | 16 | 1908 | 1734 | 66698 | 70136 | 7 |  | 1906 | 1704 | 6669 | 70095 |  |
| Change in $\sigma^{2}, \rho=0$ |  |  |  |  | Change in $\sigma^{2}, \rho=0$ |  |  |  |  |  | Change in $\sigma^{2}, \rho=0$ |  |  |  |  |  |
| 15 | 1691 | 1606 | 71278 | 7283973785 | 15 | 1690 |  | 71319 | 2877 | 73822 | 588 | 1691 | 1576 | 71265 | 72823 | 24 |
| 1610 | 17551 | 1637 | 69692 | 7191773263 | 1612 | 1761 | 1634 | 69716 | 71885 | 73242 | 1614 | 1767 | 1608 | 69841 | 72021 | 54 |
| 1631 | 1815 | 1661 | 68584 | 7126972910 | 162 | 1815 | 1659 | 68549 | 71235 | 7290 | 1630 | 1815 | 1628 | 68589 | 71269 | 72974 |
| 1645 | 18461 | 1678 | 67615 | 7073872599 | 1647 | 1849 | 1682 | 67686 | 70820 | 72681 | 1645 | 1859 | 1653 | 67691 | 70778 | 72724 |
| 1661 | 19091 | 1699 | 66849 | 702567240 |  | 1908 | 1697 | 66774 | 70191 | 723 | 1669 | 1905 | 1669 | 6678 | 70271 | 72443 |
| Change in $\boldsymbol{\sigma}^{\mathbf{2}}, \rho=\mathbf{- 0 . 2 5}$ |  |  |  |  | Change in $\boldsymbol{\sigma}^{2}, \rho=\mathbf{- 0 . 2 5}$ |  |  |  |  |  | Change in $\sigma^{2}, \rho=\mathbf{- 0 . 2 5}$ |  |  |  |  |  |
| 1588 | 16901 | 1584 | 71271 | 728327409 | 158 | 1690 | 1583 | 71196 | 72768 | 740 | 1587 | 1690 | 1553 | 71224 | 72790 |  |
| 1611 | 17551 | 1604 | 69760 | 7198073782 | 161 | 1765 | 1605 | 69700 | 71892 | 73746 | 1612 | 1753 | 1575 | 6981 | 7201 |  |
| 1629 | 1814 | 1622 | 68626 | 7129873528 | 163 | 1816 | 1620 | 68599 | 71288 | 7352 | 162 | 181 | 159 | 6856 | 71242 | 3535 |
| 1643 | 1851 | 1635 | 67595 | 7073273281 | 164 | 1851 | 1637 | 67556 | 70719 | 73255 | 16 | 1847 | 1604 | 6764 | 70775 | 73365 |
| 1669 | 18991 | 1647 | 66791 | 7025973122 |  | 1912 | 1648 | 66942 | 70373 | 73294 |  | 1914 | 1619 | 66754 | 70191 | 7320 |
| Change in $\sigma^{2}, \rho=\mathbf{0 . 5}$ |  |  |  |  | Change in $\boldsymbol{\sigma}^{\mathbf{2}}, \boldsymbol{\rho}=\mathbf{- 0 . 5}$ |  |  |  |  |  | Change in $\boldsymbol{\sigma}^{2}, \rho=\mathbf{0 . 5}$ |  |  |  |  |  |
| 1588 | 16911 | 1500 | 71235 | 7280975000 | 1588 | 1690 | 1500 | 71239 | 72809 | 7500 | 1588 | 1693 | 1500 | 71204 | 72790 | 7500 |
| 1612 | 17551 | 1500 | 69772 | 7198875000 | 1611 | 1756 | 1500 | 69743 | 71967 | 7500 | 1613 | 1744 | 1500 | 6976 | 72032 | 75000 |
| 1630 | 18141 | 1500 | 68641 | 7129875000 | 1630 | 1815 | 1500 | 68613 | 71283 | 75000 | 1631 | 1816 | 1500 | 6861 | 71291 | 75000 |
| 1646 | 18591 | 1500 | 67620 | 7072475000 | 1646 | 1852 | 1500 | 67631 | 70772 | 75000 | 1646 | 1849 | 1500 | 67651 | 70785 | 75000 |
| 1648 | 18541 | 1500 | 67590 | 7075375000 | 1660 | 1911 | 1500 | 66745 | 70168 | 75000 | 1661 | 1914 | 1500 | 66725 | 70174 | 7500 |

Parameter values: Mean demand $=500$, Cost $=20$, Salvage value $=5, \sigma^{2}=10000$ for each of the three products; Marginal cost of capacity $=10$ for any type of plant; $\rho=\{0.99,0.5,0.25,0,-$ $0.25,-0.5\}$
$\rightarrow$ Horizontally \{ Capacity 1, Capacity 2, Capacity 3, Profit 1, Profit 2, Profit 3\}

| Price $=\{80,80,80\}$ |  |  |  |  |  | Price $=\{60,80,100\}$ |  |  |  |  |  | Price $=\{40,80,120\}$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Change in $\rho, \sigma^{2}=10000$ |  |  |  |  |  | Change in $\rho, \sigma^{2}=10000$ |  |  |  |  |  | Change in $\rho, \sigma^{2}=10000$ |  |  |  |  |  |
| 1658 | 1912 | 1851 | 66958 | 70342 | 70583 | 1685 | 1898 | 1703 | 66357 | 69971 | 70921 | 1684 | 1893 | 1676 | 66698 | 70098 | 72076 |
| 1652 | 1907 | 1791 | 66457 | 69868 | 70939 | 1682 | 1914 | 1670 | 66737 | 70271 | 71943 | 1682 | 1894 | 1650 | 667 | 70126 | 2569 |
| 1654 | 1905 | 1761 | 66719 | 70096 | 71621 | 1679 | 1898 | 164 | 66602 | 70141 | 72210 | 1689 | 1890 | 1625 | 66851 | 70297 | 305 |
| 1661 | 1909 | 1699 | 66849 | 70256 | 72408 | 1668 | 1906 | 1614 | 66759 | 70153 | 72734 | 1688 | 1899 | 1596 | 67132 | 70484 | 736 |
| 1669 | 1899 | 1647 | 66791 | 70259 | 73122 | 1687 | 1899 | 1583 | 66722 | 70288 | 73486 | 1702 | 1896 | 1589 | 66727 | 70244 | 377 |
| 1648 | 1854 | 1500 | 67590 | 70753 | 7500 | 1676 | 1908 | 1500 | 66721 | 70181 | 74975 | 1685 | 1886 | 1500 | 66940 | 70330 | 75006 |

## Appendix B.3:

Parameter values: Mean demand $=500$, Cost $=20$, Salvage value $=5$ for each of the three products; Marginal cost of capacity $=10$ for any type of plant; $\sigma^{2}=\{2000,4000,6000,8000$, 10000\}

$\rightarrow$ Horizontally \{ Capacity 1, Capacity 2, Capacity 3, Profit 1, Profit 2, Profit 3\}

| Price $=\{80,80,80\}$ |  |  |  |  | Price $=\{55,55,55\}$ |  |  |  |  |  | Price $=\{40,40,40\}$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Change in $\sigma^{2}, \rho=0.99$ |  |  |  |  | Change in $\boldsymbol{\sigma}^{\mathbf{2}}, \boldsymbol{\rho}=\mathbf{0 . 9 9}$ |  |  |  |  |  | Change in $\sigma^{2}, \rho=0.99$ |  |  |  |  |  |
|  | 1692 | 166 | 7127 | 4 |  |  | 1579 | 342 | 3538 |  |  | 1680 |  | 2286 | 309 |  |
|  | 1742 | 1742 | 9797 | 020 |  | 175 | 1607 | 32939 | 3461 | 35 |  | 1772 | 16 | 0 | 12173 |  |
|  | 181 | 1779 | 8396 | 7105971 | 16 | 1812 | 1630 | 320 | 3406 | 347 |  | 1810 | 16 | 1014 | 11700 |  |
|  | 1845 | 181 | 7799 | 088071 |  | 86 | 1651 | 31 | 33 | 34 |  | 1863 | 16 | 954 | 11190 |  |
|  | 1912 | 185 | 6958 | 34 |  | 189 | 1670 | 30 | 33111 | 34 |  | 1888 | 1678 |  | 0801 |  |
| Change in $\sigma^{2}, \rho=0.5$ |  |  |  |  | Change in $\sigma^{2}, \rho=0.5$ |  |  |  |  |  | Change in $\sigma^{2}, \rho=0.5$ |  |  |  |  |  |
|  |  |  | 71296 |  |  |  | 156 | 3429 |  |  |  | 680 |  | 1227 |  |  |
|  |  | 1678 | 9666 | 1887 |  |  | 1588 | 32 | 34 | 356 |  | 1770 | 1590 | 11198 | 21 |  |
|  | 18 | 174 | 8688 | 713447 |  |  | 1608 | 31 | 34 |  |  | 1801 | 1620 | 10156 | 17 |  |
|  |  | 176 | 67399 | 705347 |  | 186 | 1629 | 31449 | 33581 |  |  |  | 1617 | 96 | 11171 |  |
|  | 1901 | 1791 | 6457 | 6986870939 |  | 1900 | 1644 | 30567 | 33148 |  |  | 180 | 1650 |  | 10771 |  |
| Change in $\sigma^{2}, \rho=0.25$ |  |  |  |  | Change in $\sigma^{2}, \rho=0.25$ |  |  |  |  |  | Change in $\sigma^{2}, \rho=0.25$ |  |  |  |  |  |
|  | 1690 | 1621 | 71211 | 72777 |  | 169 | 1555 |  |  |  | 1575 | 1680 |  |  |  |  |
|  | 175 | 166 | 9708 | 719407 | 162 | 1759 | 15 | 3305 | 34 | 35 | 1602 | 1769 | 1589 | 11183 | 2161 | 1368 |
|  | 181 |  | 684 |  |  | 1809 | 1591 | 3191 | 340 | 355 | 16 | 1810 | 15 | 1012 | 1705 |  |
|  | 18 | 171 | 7783 | 709137 |  | 1861 | 1610 | 31357 | 3353 | 35 | 1646 | 1857 | 1616 | 953 | 1141 |  |
|  | 1905 | 176 | 66719 | 700967 |  | 1904 | 162 | 30553 | 33143 | 35052 |  | 1901 | 1619 | 888 | - |  |
| Change in $\sigma^{2}, \rho=0$ |  |  |  |  | Change in $\sigma^{2}, \rho=0$ |  |  |  |  |  | Change in $\sigma^{2}, \rho=0$ |  |  |  |  |  |
|  | 1691 |  | 1278 | 7283 |  |  |  |  |  |  |  | 1680 |  |  |  |  |
|  | 1755 | 163 | 692 | 7191773 |  |  | 1565 | 33009 |  |  |  | 1749 |  |  |  |  |
|  | 1815 | 1661 | 68584 | 7126972 |  |  | 1576 | 322 | 3405 | 35912 |  | 1807 |  |  |  |  |
|  | 1846 | 167 | 析 | 707387 |  | 1865 | 1588 | 31378 | 33526 | 35 |  | 1859 | 1586 | 956 |  |  |
|  | 1909 | 1699 | 66849 | 7025672408 |  | 1911 | 1600 | 30528 | 33060 |  |  | 1901 | 1618 | 8881 | 10750 |  |
| Change in $\sigma^{2}, \rho=\mathbf{- 0 . 2 5}$ |  |  |  |  | Change in $\boldsymbol{\sigma}^{\mathbf{2}}, \boldsymbol{\rho}=\mathbf{- 0 . 2 5}$ |  |  |  |  |  | Change in $\sigma^{2}, \rho=\mathbf{0 . 2 5}$ |  |  |  |  |  |
|  |  | 158 | 271 | 72832 |  | 169 | 1531 |  |  |  |  | 1678 |  |  |  |  |
|  | 1755 | 160 | 760 | 7198073782 | 16 | 1757 | 1544 | 32984 | 3467 | 36 |  | 17 |  |  |  |  |
|  | 181 | 162 | 626 | 7129873 |  |  | 1555 | 319 |  | 36 |  | 180 | 1558 | 01 |  | 14097 |
|  | 185 | 163 | 67595 | 7073273281 |  | 1863 | 1562 | 31393 | 335 |  |  | 186 | 156 | 9467 |  |  |
|  | 18 | 1647 | 66791 | 702597 |  | 1911 | 1572 | 30457 | 32974 |  |  | 18 | 15 | 9022 | 10832 |  |
| Change in $\sigma^{2}, \rho=\mathbf{- 0 . 5}$ |  |  |  |  | Change in $\sigma^{2}, \rho=-0.5$ |  |  |  |  |  | Change in $\boldsymbol{\sigma}^{\mathbf{2}}, \boldsymbol{\rho}=\mathbf{- 0 . 5}$ |  |  |  |  |  |
|  | 1691 |  | 㖪 | 7280975 |  |  | 1500 |  |  |  | 15 | 168 |  |  |  |  |
|  | 1755 | 1500 | 69772 | 719887500 |  |  | 1500 | 3296 | 34646 | , | 1603 | 176 |  |  |  |  |
|  | 18 | 150 | 641 | 7129875 |  |  | 1500 | 31 | 34052 | 375 | 16 | 1810 | 150 | 12 |  |  |
|  | 185 | 1500 | 67620 | 707247500 |  | 1861 | 1500 | 31329 | 33500 | 37500 | 1646 | 1858 | 1500 | 9593 | 1187 | 150 |
| 16 | 185 | 150 | 67590 | 7075375 |  |  | 1500 | 30437 | 32974 | 375 | 16 | 188 | 1500 | 8757 | 0844 | 150 |

## Appendix B.4:

Parameter values: Mean demand $=500$, Price $=80$, Cost $=20$, Salvage value $=5, \sigma^{2}=10000$ for each of the three products; $\rho=\{0.99,0.5,0.25,0,-0.25,-0.5\}$
$\rightarrow$ Horizontally \{Capacity 1, Capacity 2, Capacity 3, Profit 1, Profit 2, Profit 3\}

| Capacity Cost = 5 |  |  |  |  |  | Capacity Cost $=10$ |  |  |  |  |  | Capacity Cost $=15$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Change in $\rho, \sigma^{2}=10000$ |  |  |  |  |  | Change in $\rho, \sigma^{2}=10000$ |  |  |  |  |  | Change in $\rho, \sigma^{2}=10000$ |  |  |  |  |  |
| 1686 | 1916 | 1912 | 74899 | 79572 | 79580 | 1658 | 1912 | 1851 | 66958 | 70342 | 70583 | 1671 | 1911 | 1700 | 58724 | 60900 |  |
| 1692 | 1919 | 1847 | 75387 | 80021 | 80537 | 1652 | 1907 | 1791 | 66457 | 69868 | 70939 | 1662 | 1890 | 1664 | 58198 | 60586 | 62618 |
| 1686 | 1915 | 1792 | 74987 | 79636 | 80449 | 1654 | 1905 | 1761 | 66719 | 70096 | 71621 | 1661 | 1898 | 1640 | 58276 | 60552 | 63292 |
| 1691 | 1919 | 1743 | 75288 | 79936 | 81091 | 1661 | 1909 | 1699 | 66849 | 70256 | 72408 | 1665 | 1914 | 1621 | 58372 | 60571 | 64140 |
| 1686 | 1918 | 1670 | 75119 | 79761 | 81408 | 1669 | 1899 | 1647 | 66791 | 70259 | 73122 | 1666 | 1903 | 1584 | 58439 | 60735 | 65197 |
| 1686 | 1916 | 1500 | 75099 | 79726 | 82500 | 1648 | 1854 | 1500 | 67590 | 70753 | 75000 | 1667 | 1910 | 1500 | 58453 | 60648 | 67500 |

## Appendix B.5:

Parameter values: Mean demand $=500$, Cost $=20$, Salvage value $=5$ for each of the three products; Marginal cost of capacity $=10$ for any type of plant; $\sigma^{2}=\{2000,4000,6000,8000$, 10000\}
$\rightarrow$ Horizontally $\rho=\{0.99,0.5,0.25,0,-0.25,-0.5\}$

| PdPPF Index without Service Level Constraint |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Price $=\{80,80,80\}$ |  |  |  |  |  | Price $=\{55,55,55\}$ |  |  |  |  |  | Price $=\{40,40,40\}$ |  |  |  |  |  |
| Change in $\boldsymbol{\sigma}^{\mathbf{2}}$ |  |  |  |  |  | Change in $\boldsymbol{\sigma}^{\mathbf{2}}$ |  |  |  |  |  | Change in $\boldsymbol{\sigma}^{\mathbf{2}}$ |  |  |  |  |  |
| 99.64 | 81.91 | 73.57 | 65.69 | 57.81 | 45.04 | 99.55 | 78 | 69.58 | 62.33 | 53.41 | 40.36 | 99.44 | 72. | 59.51 | 53.59 | 45. | 32.85 |
| 99.57 | 81.66 | 73.53 | 66.39 | 58.01 | 45.01 | 99.54 | 78.72 | 70.18 | 61.80 | 53.31 | 40.36 | 99.34 | 72. | 62. | 53.54 | 45.19 | 32.80 |
| 99.55 | 81.53 | 73.79 | 65.67 | 58.18 | 45.26 | 99.46 | 67.98 | 70.00 | 61.1 | 53.14 | 40.24 | 99.34 | 72.8 | 62.81 | 53.85 | 45.38 | 32.95 |
| 99.55 | 81.87 | 74.03 | 65.86 | 57.65 | 45.01 | 99.49 | 78.70 | 69.98 | 61.58 | 53.25 | 40.22 | 99.23 | 72.55 | 62.92 | 53.88 | 45.59 | 32.78 |
| 99.59 | 81.22 | 73.32 | 66.33 | 58.12 | 44.95 | 99.51 | 78.57 | 69.44 | 61.64 | 53.40 | 40.56 | 99.40 | 72.61 | 62.2 | 53.67 | 45. | 32.77 |
| PdPPF Index with Service Level Constraint |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Price $=\{80,80,80\}$ |  |  |  |  |  | Price $=\{55,55,55\}$ |  |  |  |  |  | Price $=\{40,40,40\}$ |  |  |  |  |  |
| 91.87 | 76.42 | 68.93 | 62.27 | 55.24 | 41.81 | 68.41 | 58.10 | 53.62 | 29.08 | 43.80 | 34.83 | 56.81 | 47.13 | 44.23 | 41.90 | 36.89 | 29.64 |
| 99.55 | 77.20 | 69.97 | 62.31 | 55.20 | 42.39 | 74.00 | 62.23 | 57.08 | 52.29 | 46.71 | 37.03 | 55.39 | 41.04 | 39.10 | 40.27 | 32.21 | 30.08 |
| 94.94 | 78.49 | 68.85 | 62.07 | 54.51 | 41.78 | 74.27 | 63.06 | 58.49 | 49.09 | 47.96 | 38.01 | 59.44 | 53.85 | 46.89 | 43.92 | 39.29 | 32.25 |
| 96.14 | 79.09 | 69.77 | 62.66 | 55.17 | 42.06 | 73.29 | 60.48 | 55.83 | 39.98 | 44.13 | 35.18 | 54.92 | 46.12 | 44.42 | 39.91 | 38.16 | 29.48 |
| 93.35 | 76.10 | 68.89 | 61.29 | 54.78 | 42.69 | 73.88 | 63.01 | 57.57 | 50.98 | 45.13 | 35.91 | 57.16 | 48.86 | 44.83 | 42.15 | 38.09 | 33.43 |

## Appendix C: Unmet Demand Percentage

## Appendix C.1:

Parameter values: Mean demand $=500$, Cost $=20$, Salvage value $=5, \sigma^{2}=10000$ for each of the three products; Marginal cost of capacity $=10$ for any type of plant; $\rho=\{0.99,0.5,0.25,0,-$ $0.25,-0.5\}$
$\rightarrow$ Horizontally \{Unmet demand \% for cases 1, 2 and 3\}

| Price $=\{80,80,80\}$ |  |  | $\text { Price }=\{60,80,100\}$$\text { Change in } \rho$ |  |  | $\begin{gathered} \hline \text { Price }=\{40,80,120\} \\ \hline \text { Change in } \rho \end{gathered}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 33.01 | 16.4 | 5.53 | 34.69 | 17.76 | 8.29 | 41.82 | 25.25 | 16.64 |
| 32.92 | 16.35 | 5.52 | 34.71 | 17.82 | 8.3 | 41.84 | 25.29 | 16.61 |
| 33 | 16.39 | 5.52 | 34.65 | 17.78 | 8.27 | 41.82 | 25.31 | 16.58 |
| 32.97 | 16.44 | 5.51 | 34.59 | 17.78 | 8.28 | 41.84 | 25.32 | 16.57 |
| 33.03 | 16.38 | 5.49 | 34.64 | 17.79 | 8.26 | 41.77 | 25.25 | 16.48 |
| 32.94 | 16.39 | 0 | 34.67 | 17.78 | 0 | 41.9 | 25.28 | 0 |

## Appendix C.2:

Parameter values: Mean demand $=500$, Cost $=20$, Salvage value $=5, \sigma^{2}=10000$ for each of the three products; Marginal cost of capacity $=10$ for any type of plant; $\rho=\{0.99,0.5,0.25,0,-$ $0.25,-0.5\}$
$\rightarrow$ Horizontally \{Unmet demand \% for cases 1, 2 and 3\}

| Price $=\{80,80,80\}$ |  |  | Price $=\{55,55,55\}$ |  |  | Price $=\{40,40,40\}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Change in $\rho$ |  |  | Change in $\rho$ |  |  | Change in $\rho$ |  |  |
| 33.01 | 16.4 | 5.53 | 49.55 | 28.26 | 9.5 | 71.1 | 49.63 | 16.62 |
| 32.92 | 16.35 | 5.52 | 49.61 | 28.29 | 9.47 | 71.03 | 49.55 | 16.61 |
| 33 | 16.39 | 5.52 | 49.64 | 28.29 | 9.48 | 71.04 | 49.6 | 16.6 |
| 32.97 | 16.44 | 5.51 | 49.62 | 28.22 | 9.47 | 71.06 | 49.57 | 16.59 |
| 33.03 | 16.38 | 5.49 | 49.65 | 28.18 | 9.44 | 71.1 | 49.61 | 16.52 |
| 32.94 | 16.39 | 0 | 49.53 | 28.24 | 0 | 71.13 | 49.58 | 0 |

## Appendix C.3:

Parameter values: Mean demand $=500$, Price $=80$, Cost $=20$, Salvage value $=5, \sigma^{2}=10000$ for each of the three products; $\rho=\{0.99,0.5,0.25,0,-0.25,-0.5\}$
$\rightarrow$ Horizontally \{Unmet demand \% for cases 1, 2 and 3\}

| Capacity cost =5 |  |  | $\begin{gathered} \hline \text { Capacity cost }=10 \\ \text { Change in } \rho \\ \hline \end{gathered}$ |  |  | Capacity cost $=15$ <br> Change in $\rho$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 26.28 | 8.17 | 2.76 | 33.01 | 16.4 | 5.53 | 39.61 | 24.68 | 8.29 |
| 26.37 | 8.16 | 2.76 | 32.92 | 16.35 | 5.52 | 39.59 | 24.66 | 8.31 |
| 26.31 | 8.18 | 2.76 | 33 | 16.39 | 5.52 | 39.6 | 24.64 | 8.28 |
| 26.31 | 8.19 | 2.73 | 32.97 | 16.44 | 5.51 | 39.61 | 24.68 | 8.25 |
| 26.3 | 8.22 | 2.73 | 33.03 | 16.38 | 5.49 | 39.59 | 24.68 | 8.25 |
| 26.33 | 8.18 | 0 | 32.94 | 16.39 | 0 | 39.64 | 24.67 | 0 |

## Appendix D: Incremental Profit Value

| Price $=\{80,80,80\}$ |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Dedicated Plant, Postponement |  |  |  |  |  | Flexible Plant, Postponement |  |  |  |  |  |
| -0.26 | -0.13 | -0.22 | -0.17 | -0.21 | -0.25 | -0.08 | 0.03 | -0.06 | -0.05 | -0.14 | 0.00 |
| -0.12 | -0.33 | -0.44 | -0.40 | -0.23 | -0.20 | -0.12 | -0.14 | -0.27 | -0.17 | -0.07 | 0.00 |
| -0.51 | -0.12 | -0.36 | -0.16 | -0.19 | -0.31 | -0.33 | 0.00 | -0.08 | 0.06 | 0.06 | 0.00 |
| -0.23 | -0.57 | -0.25 | -0.36 | -0.33 | -0.33 | -0.08 | -0.41 | 0.02 | -0.15 | -0.15 | 0.00 |
| 0.01 | -0.93 | -0.59 | -0.12 | -0.43 | 0.33 | 0.33 | -0.60 | -0.33 | 0.26 | -0.10 | 0.00 |
| Price $=\{55,55,55\}$ |  |  |  |  |  |  |  |  |  |  |  |
| Dedicated Plant, Postponement |  |  |  |  |  | Flexible Plant, Postponement |  |  |  |  |  |
| -1.43 | -1.40 | -1.40 | -1.53 | -1.45 | -1.40 | 0.02 | 0.05 | 0.04 | -0.04 | 0.01 | 0.00 |
| -1.91 | -1.77 | -1.31 | -1.50 | -1.59 | -1.71 | -0.26 | -0.08 | 0.37 | 0.17 | 0.09 | 0.00 |
| -1.93 | -2.21 | -2.11 | -1.80 | -1.97 | -1.99 | 0.05 | -0.31 | -0.12 | 0.10 | -0.06 | 0.00 |
| -2.45 | -2.33 | -2.14 | -2.19 | -2.20 | -2.41 | -0.14 | 0.03 | 0.16 | 0.12 | 0.17 | 0.00 |
| -2.39 | -2.49 | -2.32 | -2.74 | -3.02 | -2.76 | 0.22 | 0.03 | 0.17 | 0.01 | -0.19 | 0.00 |
| Price $=\{40,40,40\}$ |  |  |  |  |  |  |  |  |  |  |  |
| Dedicated Plant, Postponement |  |  |  |  |  | Flexible Plant, Postponement |  |  |  |  |  |
| -6.04 | -6.08 | -5.92 | -6.06 | -6.01 | -6.02 | -1.66 | -1.04 | -1.23 | -1.27 | -0.43 | 0.00 |
| -9.60 | -9.69 | -9.93 | -8.63 | -9.75 | -9.19 | -2.00 | -1.37 | -1.87 | -1.00 | -1.21 | -2.00 |
| -10.89 | -10.20 | -11.12 | -10.83 | -10.91 | -11.17 | -2.85 | -2.00 | -1.64 | -1.54 | -1.01 | 0.00 |
| -13.03 | -13.25 | -13.50 | -13.12 | -13.01 | -12.88 | -2.59 | -2.08 | -2.60 | -1.38 | -0.83 | 0.00 |
| -14.25 | -14.83 | -14.98 | -14.86 | -14.04 | -13.99 | -3.25 | -3.34 | -2.19 | -2.36 | -1.73 | 0.00 |


| Change in Price Differential $=\{0,40,80\}$ |  |  |  |  |  | Change in Capacity Cost $=\{5,10,15\}$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Dedicated Plant, Postponement |  |  | Flexible Plant, Postponement |  |  | Dedicated Plant, Postponement |  |  | Flexible Plant, Postponement |  |  |
| 0.01 | -0.49 | -1.09 | 0.33 | -0.01 | -0.64 | 0.35 | 0.01 | -1.48 | 0.35 | 0.33 | 0.38 |
| -0.93 | -0.24 | -1.31 | -0.60 | 0.30 | -0.81 | 0.71 | -0.93 | -2.10 | 0.73 | -0.60 | -0.48 |
| -0.59 | -0.62 | -0.90 | -0.33 | -0.13 | -0.31 | -0.45 | -0.59 | -2.05 | -0.43 | -0.33 | -0.27 |
| -0.12 | -0.74 | -0.65 | 0.26 | -0.22 | 0.08 | 0.16 | -0.12 | -2.00 | 0.11 | 0.26 | -0.16 |
| -0.43 | -0.32 | -1.17 | -0.10 | 0.15 | -0.47 | -0.03 | -0.43 | -1.64 | -0.04 | -0.10 | 0.08 |
| 0.33 | -0.58 | -0.76 | 0.00 | -0.07 | 0.05 | -0.05 | 0.33 | -1.81 | 0.00 | 0.00 | 0.00 |

## Appendix E: Graphs



Fig 1: Optimal profit versus capacity for (a) dedicated plant no postponement, (b) dedicated plant postponement and (c) flexible plant

(a)

(b)

(c)

Fig 2: Optimal capacity versus demand correlation for (a) dedicated plant no postponement, (b) dedicated plant postponement and (c) flexible plant for different variance levels

(a)

(b)

(c)

Fig 3: Optimal profit versus demand correlation for (a) dedicated plant no postponement, (b) dedicated plant postponement and (c) flexible plant for different variance levels


Fig 4: Optimal capacity versus demand correlation for (a) dedicated plant no postponement, (b) dedicated plant postponement and (c) flexible plant for different coefficient of variation levels


Fig 5: Optimal profit versus demand correlation for (a) dedicated plant no postponement, (b) dedicated plant postponement and (c) flexible plant for different coefficient of variation levels


Fig 6: PdPPF Index vs. correlation for change in (a) Price differential (b) Price and (c) Capacity Cost


Fig 7: Effect of Service Level Constraint (SLC) on PdPPF Index vs. correlation for change in (a) Price differential (b) Price and (c) Capacity Cost

