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METAHEURISTIC APPLICATIONS ON DISCRETE FACILITY

LOCATION PROBLEMS: A SURVEY

Sumanta Basu∗ Megha Sharma† Partha Sarathi Ghosh‡

Abstract

This paper provides a detailed review of metaheuristic applications on discrete facility location problems.
The objective of this paper is to provide a concise summary of solution approaches based on four commonly
used metaheuristics: genetic algorithm, tabu search, particle swarm optimization and scatter search for
different variants of the discrete facility location problem. Such a concise summary is expected to be
useful for researchers interested in any of the major variants of discrete facility location problem as for each
metaheuristic the paper provides a comprehensive review of different variants on which this metaheuristic has
been applied, and the details of its implementation. Therefore, a research can exploit a method developed
for another variant to solve the problem variant at hand. Based on our review of these papers, we also
report some interesting observations, identify research gaps and highlight directions for future research.

Facility Location, Genetic Algorithm, Tabu Search, Particle Swarm Optimization, Scatter
Search

1 Introduction

Discrete facility location problems are one of the most extensively studied combinatorial optimization problems.
Different variants of this problem have been used to model a wide variety of real life problems. For example,
real life plant location problems have been modeled as uncapacitated or capacitated facility location problems,
p-center problems have been used to determine the location of emergency services such as ambulances, medical
services, and police vans etc., and the problem of locating distribution centers to serve customers within a
limited service time has been modeled as the maximal covering location problems. Other variants such as the
p-median problems and the p-dispersion problems have also been applied extensively in real life. A detailed
review of the different variants of the discrete facility location problems and their applications can be found in
(Drezner, 1995).

Different solution approaches have been proposed and used for different variants. Since almost all variants of
the discrete facility location problems are NP -hard, exact approaches are limited. Hence most real life discrete
facility location problems are solved through heuristics and metaheuristics. While heuristic solution approaches
are more problem specific, metaheuristics have a problem independent structure consisting of components which
exploit problem related information. Review of different exact and heuristic solutions approaches categorized
by problem variant can be found in (Drezner, 1995; Drezner and Hamacher, 2004). While there has been a
significant amount of research on metaheuristic based solution approaches in the last one decade, and many of
these approaches have been found to outperform problem specific heuristics, to the best of our knowledge no
comprehensive review of the literature on these approaches is available. Although similar literature survey is
available for p-median problems (Mladenovic et al., 2007), it is restricted within a specific context. This paper
aims to fill in this gap by providing a comprehensive review of the literature on metaheuristic applications in
solving discrete facility location problems.

In particular, we review the published applications of four of the most popular and extensively researched
metaheuristics, namely genetic algorithms, tabu search, particle swarm optimization, and scatter search in the
field of discrete facility location problems. While most of the review papers on solution approaches to a problem
class, present the survey by each problem class, in this paper we adopt a different approach and provide the
survey by solution approaches i.e. metaheuristics and within each metaheuristic we subcategorize the literature
by problem class it refers to. There are four major reasons behind our approach as given below.

Firstly, since metaheuristics consists of different components, each of which can be implemented in one of
many different ways for solving a problem. As the rationale of choosing one implementation of a component over
others is not as objective as with any analytical or exact solution approach, many a times, an implementation
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is chosen either due to the ease or convenience of implementing it. As the rationale is very subjective and
there are many implementations possible, most papers while presenting a solution approach do not compare
the performance of different implementations. Due to this, most often when new solution approaches using
that metaheuristic are presented, they choose the implementations already reported in the literature. As a
result of this, one can note that some particular implementations are used in the literature again and again,
while some other implementations which have given good results in related problem variants are not explored.
Therefore, in this paper we organize our survey by metaheuristics and not problem classes to emphasize on the
implementations that have been used in the literature on different problem variants. This would help researchers
working on a particular problem variant select from implementations that may not have been implemented on
this variant but have worked well on other variants. This would enable deeper exploitation of the benefits that
each of these metaheuristics offer.

Secondly, most of the current research in the domain of discrete facility location focuses on extensions
of the basic facility location models such as facility location with vehicle routing (Nagy and Salhi, 2007),
facility location with inventory management (Shen et al., 2003), facility location with stochastic demand or
transportation costs (Snyder, 2006), reliable facility location (Shen, 2011) etc. Here again, the choice of a
metaheuristic over another for solving these extended problems is often arbitrary, and within a metaheuristic
the choice of an implementation of a component is generally based on that used for solving the basic variant
in the literature. Sometimes, different implementations from other problem variants are also explored. As the
choice of a metaheuristic is based on its success as reported in the literature, classifying our survey based on
metaheuristics seems to be an obvious choice.

Thirdly, for a researcher new to the area of discrete facility location our work provides a complete overview
of the basic variants of the discrete facility location problems, four of the most commonly used metaheuristics,
and reports applications of these metaheuristics to different problem variants. Our scheme clearly indicates
the less or unexplored areas within each of the four metaheuristics for solving the facility location problem. It
will help researchers identify research gaps in terms of metaheuristics based solution approaches for discrete
facility location problems. Moreover, as we present four of the most popular metaheuristics, our survey will
also help researchers develop new hybrid metaheuristics for solving different problem variants. One may note
that recently hybrid metaheuristics have emerged as the solution method of choice not only for facility location
problems (Resende and Werneck, 2004, 2006) but also for different combinatorial optimization problems such
as the travelling salesman problem (Tsai et al., 2004) etc.

Lastly, as a problem specific metaheuristic implementation is likely to perform better, many problem specific
metaheuristics have been proposed in the literature. Unfortunately, most of these implementations never
get used in practice due to assumptions inherent in the model. To overcome, this research-practice divide
researchers have started focusing on generalized metaheuristics which are problem independent (see for example,
Campos et al. (2005)). These generalized metaheuristics do not always perform as good as a problem specific
metaheuristic, overall on a problem class they perform acceptably well. To the best of our knowledge, there
is no such generalized metaheuristic for discrete facility location problems. This review by presenting different
problem variants and different metaheuristic based solution approached provides a stepping stone for such a
generalized metaheuristic.

Moreover, we also provide a list of benchmark problems used by different papers surveyed in this review.
As we note different papers on the same problem variant use different benchmark problems to quantify the
performance of their solution approach. This makes comparison between different solution approaches difficult.
By providing a list of commonly used benchmark problems, we hope future research in the area would use
common benchmark problems, thus making the comparison between different approaches easier.

The paper is organized as follows. In Section 2, we briefly describe the problem variants that we review in
this paper. Section 2 also provides an overview of different problem types segregated by size of the problem
addressed in published literature. A complete list of all benchmark problems segregated by major problem
categories is provided to facilitate comparative research in this area. Section 3.2 elaborates on application
and implementation issues of genetic algorithm on various discrete location problems. In section 3.1, we
provide details of tabu search implementation. A short discussion on Particle swarm optimization is found in
section 3.3. Scatter search components along with location problems addressed are summarized in Section 3.4.
We conclude the paper in Section 4 by highlighting some important observations and major open issues in this
area of research.

2 Discrete Facility Location: Basic Problem Variants

Facility location problems are problems of choosing a subset of locations from a given set of potential locations
to establish facilities so as to optimize a given function of these chosen locations while satisfying certain
constraints. Based on the set of potential locations, facility location problems can be classified into discrete
facility location problems and continuous facility location problems depending upon whether the set of potential

2



locations is discrete or continuous. In discrete facility location problems an exhaustive list of potential locations
for facilities is available, while in case of continuous facility location a continuous space as usually specified by
its co-ordinates is provided. The treatment of problems from these two classes differs significantly and their
solution approaches are also significantly different. Discrete facility location problems, which are the focus of
this work, are combinatorial optimization problems. Discrete facility location problems have attracted more
focus in published literature in recent years because of their wider application areas (Mirchandani and R.L.,
1990). A detailed list of real life problems modelled as discrete facility location problems can be found in the
book by Drezner (Drezner, 1995). In this section, we briefly describe the major variants of the discrete facility
location problems.

In all the problem variants, one is given a set D of demand points with the demand di for each demand
point i ∈ D, a set F of potential locations for facilities, the cost cij of transporting one unit of supply from
facility j ∈ F to demand point i ∈ D for all possible facility - demand point combinations. Different problem
variants differ in terms of other characteristics such as fixed cost fj of opening a facility at potential location
j ∈ F , the capacity Kj of a facility if opened at potential location j ∈ F etc. provided to the decision maker.
Problem variants also differ in terms of their objective function and the constraints they impose on facilities
etc. Given this basic nomenclature, we define the major variants of the problem as follows.

Uncapacitated Facility Location Problem (UFLP): Given a set D of demand points with the demand di
for each demand point i ∈ D, a set F of potential locations for facilities, fixed cost fj of opening a facility
at potential location j ∈ F , the cost cij of transporting one unit of supply from facility j ∈ F to demand
point i ∈ D for all possible facility - demand point combinations, the UFLP is the problem of choosing a
subset F ′ ⊆ F to open the facilities at and assigning each demand point to at least one open facility, such
that the sum of the fixed costs of opening these facilities and the total transportation cost of supplying
di units of demand at each demand point i ∈ D from its assigned facility in F ′ is minimized. UFLP is
also referred to as the Simple Plant Location (SPL) Problem. Since there are no capacity constraints,
each demand point is assigned to its closest opened facility, and the problem reduces to that of simply
choosing the locations to open the facilities at. UFLP has been extensively used in practice when one is
free to choose the plant capacity as well. Applications of SPL are elaborated in papers like (Melo et al.,
2009; Verter, 2011).

p-Median Problem (PMP): Given a set D of demand points with the demand di for each demand point
i ∈ D, a set F of potential locations for facilities, the cost cij of transporting one unit of supply from
facility j ∈ F to demand point i ∈ D for all possible facility - demand point combinations, and a number
p, the PMP is the problem of choosing a subset F ′ ⊆ F , where |F ′| = p, to open the facilities at
and assigning each demand point to an opened facility in F ′, such that the total transportation cost of
supplying di units of demand at each demand point i ∈ D from facilities in F ′ is minimized. Since there
are no capacity constraints, each demand point is assigned to its closest opened facility, and the problem
reduces to that of simply choosing the locations to open the facilities at. PMP is used to model those
situations wherein the number of facilities to be opened is pre-specified. Applications of PMP can be
found in (Tansel et al., 1983).

p-Center Problem (PCP): Given a set D of demand points, a set F of potential locations for facilities, the
cost cij of transporting one unit of supply from facility j ∈ F to demand point i ∈ D for all possible
facility - demand point combinations, the PCP is the problem of choosing a subset F ′ ⊆ F , where
|F ′| = p, to open the facilities at and assigning each demand point to an opened facility in |F ′|, such that
the maximum cost among all the demand points and their assigned facilities is minimized. Applications
of PCP include location decisions for emergency facilities such as ambulances, police vans etc. For more
applications of p-median problems, interested readers are advised to see papers like (Tansel et al., 1983;
Huang et al., 2010).

Capacitated Facility Location Problem (CFLP): Given a set D of demand points with the demand di
for each demand point i ∈ D, a set F of potential locations for facilities, fixed cost fj of opening a facility
at potential location j ∈ F , the capacity kj of each facility if opened at potential location j ∈ F , the
cost cij of transporting one unit of supply from facility j ∈ F to demand point i ∈ D for all possible
facility - demand point combinations, the CFLP is the problem of choosing a subset F ′ ⊆ F to open the
facilities at and assigning demand points to opened facilities without violating capacity constraints for the
facilities, such that the sum of the fixed costs of opening these facilities and the total transportation cost
of supplying di units of demand at each demand point i ∈ D from facilities in F ′ is minimized. CFLP is
generally used while choosing suppliers from existing set of suppliers or in plant location when there are
constraints on their maximum capacities.

Maximal Covering Location Problem (MCLP): Introduced by Church and Revelle (1974), the problem
context is defined with a set D of demand points with the demand di for each demand point i ∈ D, a set
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F of potential locations for facilities, the cost cij of transporting one unit of supply from facility j ∈ F
to demand point i ∈ D for all possible facility - demand point combinations. Objective of this problem is
to choose a subset F ′ ⊆ F to open the facilities at and assigning demand points within a service distance
S to opened facilities. Applications of MCLP are summarized in a paper by Chung (1986).

Hub Location Problem (HLP): While all the other problem variants described above are single stage, i.e.
plants supply directly to the demand points, HLP is a two stage facility location problem wherein there
is a set of facilities that supply to a set of distribution centers which in turn supply to a set of demand
points. Papers like (Contreras et al., 2011; Kim and O’Kelly, 2009) elaborate on some application areas
of hub location problem.

While there are some other variants such as the p-Dispersion Problem, Obnoxious Facility Location Problem,
etc., in this paper we restrict our attention to the variants described above. We chose these categories for two
reasons. Firstly, these models are the most basic and most extensively studied models of facility location.
Secondly, these models are the basis of many advanced models such as those including the inventory decisions,
vehicle routing decisions, or those including the reliability of facilities etc. In this paper, we review metaheuristic
based solution approaches for these categories, in particular, we survey papers that report solution approaches
based on Genetic Algorithms, Tabu Search, Particle Swarm Optimization, and Scatter Search. While the choice
of genetic algorithms and tabu search is motivated by the number of applications reported in the literature,
scatter search has been chosen because it has given many promising results in recent years with its more
structured methodology. Similarly, particle swarm optimization has been selected despite the limited number
of applications reported in the literature, because of its growing popularity and success reported in other
problem domains.

In the next section, we briefly describe each of the four metaheuristics and present their basic structure.
Within each metaheuristic, we classify the applications reported in the literature by the problem type they
attempt to solve. Based on these applications on different problem variants we then summarize our observations
and identify scope for future research. Before describing the solution approaches in Table 1 we provide a
bibliography for each of the problem variant categorized by the problem size on which those solution approaches
are tested. While the size of a problem instance can be specified in terms of many problem parameters, such as
the number of potential locations for facilities, number of commodities etc., for the sake of comparison among
different problem variants, we use the number of demand points to denote the problem size for two reasons,
a) it has the largest contribution to define problem size and number of facilities increases proportionately with
number of demand nodes in most of the papers and b) it gives a precise and simpler picture of problem size
distribution across surveyed papers. It is important to note that in most of the benchmark problems, the set of
demand points also serves as the set of potential locations for facilities. In most of the papers, authors attempt
problems with varying sizes to see the effectiveness of their algorithms of which we chose the maximum size (in
terms of number of demand points) to report.

As can be observed from the table, more research has been done on the simple plant location problems
which includes the UFLP and the CFLP, and the p-median problem, with more than 50% of the papers
focusing on these problems. One can also note that the testbed problem instances for these variants are quite
evenly distributed within the entire range compared to other variants which have mainly focused on smaller
instances. One exception to this is the MCLP, research on which has either focused on smaller instances with
50 to 500 demand points or larger instances with 1000 to 2500 demand points. While papers with tabu search
implementation addressed smaller problem instances in MCLP, GA based heuristics are successful to address
larger problem instances. Typically the problem sizes considered for hub location problems are lower because
of its complex network structure with multiple stages. While 10 papers out of the 45 listed in the table focus
on testbed problem instances between 1000 and 2500, a majority of these deal with problem instances with less
than 1500 demand points.

As mentioned in Section 1, while there has been a lot of research in terms of metaheuristic applications for
discrete facility location problems, different papers use different benchmark problems or testbeds to quantify
the performance of their proposed solution approach. Usage of different benchmark problems makes comparison
between different solution approaches difficult. Therefore, before providing a comprehensive review of these
metaheuristic applications, in Table 2 we present a list of the benchmark problems used by the papers we
surveyed for a ready reference for future researchers to compare their results against standard problem types.
The first column in each row refers to the paper that we reviewed and which used some benchmark problem,
and the subsequent columns give the reference to the paper(s), where the benchmark problem(s) used in the
paper was first introduced, categorized by the problem variant.

It is evident from the table that some benchmark problems have been used by multiple papers. For exam-
ple, for p-median problem, problem instances used by Beasley (Beasley, 1988, 1990, 1996) are considered for
benchmarking in many of the reviewed papers. Similarly, for MCLP problem instances available in papers by
Daskin (Daskin, 1983, 1995) are used and for HLP, problem instances designed by O’Kelly (based on airlines
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Problem SPL PMP PCP MCLP HL Total
Size

≤ 50

(Du and Evans,
2008;

Vaithyanathan
et al., 1996;

Yapicioglu et al.,
2007)

(Correa et al.,
2004)

(Calik et al.,
2009; Topcuoglu

et al., 2005;
Abdinnour-Helm,
1998; Cunha and

Silva, 2007)

8

(50, 500]

(Al-Sultan and
Al-Fawzan, 1999;
Delmaire et al.,

1999; Ohlemuller,
1997; Arostegui
et al., 2006; Lai
et al., 2010;

Contreras and
Diaz, 2008),

(Chaudhry et al.,
2003; Chi et al.,
2011; Scheuerer
and Wendolsky,
2006; Rolland
et al., 1996)

(Pacheco and
Casado, 2005;

Mozos and Mesa,
2000)

(Jia et al., 2007;
Lee and Lee,

2010;
Adenso-Diaz and
Rodriguez, 1997)

(Topcuoglu et al.,
2005; Keskin and
Uster, 2007b,a;

Chen, 2007; Silva
and Cunha, 2009)

20

(500, 1000]

(Ghosh, 2003;
Guner and Sevkil,
2008; Wang et al.,

2008)

(Stanimirovic
et al., 2007; Alp
and Erkut, 2003;

Diaz and
Fernandez, 2006),

(Jaramillo et al.,
2002)

7

(1000, 2500]

(Salhi, 2003;
Kratica et al.,

2001; Michel and
Hentenryck, 2004;

Resende and
Werneck, 2006;

Sun, 2006)

(Garcia-Lopez
et al., 2003; Salhi,

2002)

(Aytug and
Saydam, 2002;
Krzanowski and
Raper, 1999; Jia

et al., 2007)

10

()
Total 17 10 3 6 9 45

Table 1: Distribution of problem size in the literature

passenger flow between 25 US cities as evaluated by Civil Aeronautics Board (CAB)) (O’Kelly, 1987) dominates
other test problems.

3 The Metaheuristics

All the metaheuristics surveyed in this paper except tabu search are population based metaheuristics. All of
these metaheuristics start with a set of initial solutions (a singleton in case of tabu search), generated either
randomly or by exploiting some information about the problem at hand. This set of solutions is iteratively
improved by applying a set of operations on the solutions in the set, such as combining two solutions or searching
for a better neighbour of a solution in the set etc. for a pre-specified number of iterations.

A typical solution to a discrete facility location problem consists of the locations where facilities are to be
opened and an assignment of demand points to facilities. For uncapacitated variants of the problem, such as
the UFLP, PMP, PCP etc. given the locations of the facilities this assignment is trivial as each demand point
is assigned to its nearest opened facility. Assignment of demand points to facilities is not as straightforward in
case of capacitated problems such as the CFLP. For capacitated variants, the problem context can impose an
additional constraint that each demand point must be assigned to exactly one facility. Problem variants with
this additional constraint are referred to as single-source problems. When no such constraint is imposed the
problems are referred to as multi-source problems. For single-source problems, a modified assignment problem
is solved to find the optimal allocation while solving a transportation problem yields the optimal assignment
of demand points to facilities in case of multi-source problems.

We now describe each of the four metaheuristics and their applications in solving discrete facility location
problems. For each metaheuristic, we first explain its basic principle and describe its major components. We
then categorize the papers reviewed based on the problem variant(s) they address and the maximum problem
size on which they test their solution approach. We also summarize the details of the problem studied along
six major aspects of the problem: problem type (the problem variant it belongs to), maximum problem size
addressed in the paper, whether facility capacity is considered or not, for capacitated variants whether single-
source or multi-source, whether single-commodity or multi-commodity, and whether single stage or multi stage.
We then review these papers on each component of the metaheuristic, thus identifying possible areas for future
research.

3.1 Tabu search

Tabu search is one of the widely used local search based improvement metaheuristics which continues to get
superior results in discrete location problems. It starts with an initial solution to the problem, calls it the
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Paper Reference MCLP SPL PMP HL

(Aytug and Saydam, 2002) (Daskin, 1983)

(Chaudhry et al., 2003)
(Toregas et al., 1971; Choi

and Chaudhry, 1993)
(Cunha and Silva, 2007) (O’Kelly, 1987)

(Jaramillo et al., 2002) (Daskin, 1995) (Beasley, 1993, 1996)

(Kratica et al., 2001) (Beasley, 1996)

(Lai et al., 2010) (Beasley, 1988)

(Resende and Werneck,
2006)

(Hoefer, 2003, 2002)

(Stanimirovic et al., 2007) (Beasley, 1996)

(Topcuoglu et al., 2005)

(O’Kelly, 1987;
Ernst and

Krishnamoorthy,
1996)

(Alp and Erkut, 2003)
(Beasley, 1990; Koerkel,

1989)
(Abdinnour-Helm, 1998) (O’Kelly, 1987)

(Al-Sultan and Al-Fawzan,
1999)

(Beasley, 1990; Karg and
Thompson, 1964)

(Calik et al., 2009)
(O’Kelly, 1987; Tan
and Kara, 2007)

(Ghosh, 2003) (Koerkel, 1989)

(Michel and Hentenryck,
2004)

(Kratica et al., 2001)

(Silva and Cunha, 2009)

(O’Kelly, 1987;
Ernst and

Krishnamoorthy,
1996, 1998)

(Sun, 2006)
(Beasley, 1990; Kratica

et al., 2001; Kochetov, 2003;
Hoefer, 2004)

(Garcia-Lopez et al., 2003) (Reinelt, 1991)

(Contreras and Diaz, 2008)
(Ahuja et al., 2004;

Holmberg et al., 1999;
Delmaire et al., 1999)

(Diaz and Fernandez, 2006)
(Beasley, 1990; Beasley and

Chu, 1996; Lorena and
Senne, 2003, 2004)

(Ohlemuller, 1997) (Liu et al., 1982)

(Chen, 2007)

(O’Kelly, 1987;
Ernst and

Krishnamoorthy,
1996)

(Mladenovic et al., 2007)

(Koerkel, 1989; Beasley,
1990; Rolland et al., 1996;

Resende and Werneck, 2004;
Kochetov, 2003)

Table 2: List of benchmark problems

current solution, and searches for the best solution in a suitably defined neighborhood of the solution. It then
designates the best solution in the neighborhood as the current solution and starts the search process again.
Tabu search terminates when certain terminating conditions, either involving execution time, or solution quality
objectives, or both, have been met. Throughout the search process, it keeps track of the current best solution
and the best solution found so far. In order to prevent tabu search from considering solutions that it has visited
in recent iterations, tabu search maintains a list of neighbor generation moves it considers forbidden, or tabu
(hence the name, tabu search) and removes solutions that can be reached only through tabu moves from the
neighborhood. Once a move enters the list of tabu moves, it stays there for some number of successive iterations
(called the tabu tenure of the move). The list of tabu moves changes continuously during the execution of the
search, making tabu search an adaptive memory search algorithm. Several researchers have added features to
enrich the basic tabu search algorithm described here, implementing features like intermediate term memory
function for intensification, long term memory function for search diversification and aspiration criteria to
overrule tabu status. Other features that have been proposed, but not commonly implemented for tabu search
are strategic oscillation, path relinking, candidate list strategies etc. (Glover, 1989). More details about tabu
search and its components can be found in initial paper by Glover (Glover, 1989).

We present a list of tabu search applications on discrete facility location problems categorized by the problem
variant and problem size in Table 3. As is evident from the table, more researchers have focused on simple
plant location and hub location problems, followed by the p-median problem. Out of the 20 papers reviewed,
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Problem Size SPL PMP PCP MCLP HLP

≤ 50
(Vaithyanathan
et al., 1996)

(Calik et al., 2009;
Abdinnour-Helm,

1998)

(50, 500]

(Al-Sultan and
Al-Fawzan, 1999;
Delmaire et al.,

1999; Ohlemuller,
1997; Arostegui
et al., 2006)

(Rolland et al.,
1996)

(Mozos and Mesa,
2000)

(Lee and Lee,
2010; Adenso-Diaz
and Rodriguez,

1997)

(Chen, 2007; Silva
and Cunha, 2009)

(500, 1000] (Ghosh, 2003)

(1000, 2500]

(Michel and
Hentenryck, 2004;

Resende and
Werneck, 2006;

Sun, 2006)

(Salhi, 2002)

Table 3: Problem sizes addressed in papers with TS implementation

six papers consider a problem size of less than 100 demand points with majority of them addressing the hub
location problem (Abdinnour-Helm, 1998; Calik et al., 2009; Topcuoglu et al., 2005). We could find only four
papers (with no paper in MCLP) addressing a problem size of more than 1000 demand points.

3.1.1 Tabu search components

We now provide details of the reviewed applications of tabu search categorized by the tabu search components.
Initial solution: As with any local search based heuristic, the initial solution plays a vital role in setting
up the initial search space for tabu search as well. Some of the most commonly used strategies for generating
initial solution for tabu search include randomly generating initial solution, greedy approach and initial solution
based on some problem characteristics. In our case, we found that most papers use randomly generated initial
solutions (Al-Sultan and Al-Fawzan, 1999; Prez et al., 2003; Rolland et al., 1996; Sun, 2006; Ohlemuller, 1997;
Arostegui et al., 2006; Mozos and Mesa, 2000; Michel and Hentenryck, 2004; Resende and Werneck, 2006).
Papers like (Silva and Cunha, 2009; Delmaire et al., 1999; Lee and Lee, 2010; Chen, 2007; Ghosh, 2003) discuss
strategies based on a greedy approach to generate initial solutions while three papers (Calik et al., 2009; O’Kelly,
1987; Salhi, 2002), used different heuristic techniques to generate initial solutions for the HLP. The paper by
Abdinnour-Helm (Abdinnour-Helm, 1998) elaborated the usage of other meta-heuristics, in particular genetic
algorithm, to generate initial solution in the context of UFLP. To address a real-life MCLP, authors in a paper
(Adenso-Diaz and Rodriguez, 1997) developed problem specific methods to assign ambulances for the counties
as an initial solution for tabu search.

Moves: Tabu search being an improvement heuristic moves from one solution to the next in search of an
optimal solution. The method of moving from one solution to another is described by a set of rules and is called
a move. The set of all solutions that can be reached from a given solution using a pre-specified move is called
the neighborhood of the solution. Mostly two types of moves are frequently used in literature: 1-interchange
and 2-swap. The ways by which these two moves are executed in papers depend on the problem context. For
example, in the context of the CFLP 1-interchange move is defined as changing the allocation of one demand
point from one facility to another, while in the context of HLP, it is defined as changing the status of one
non-hub node to a hub node. 12 papers (Mozos and Mesa, 2000; Ohlemuller, 1997; Prez et al., 2003; Rolland
et al., 1996; Silva and Cunha, 2009; Sun, 2006; Al-Sultan and Al-Fawzan, 1999; Arostegui et al., 2006; Calik
et al., 2009; Michel and Hentenryck, 2004; Delmaire et al., 1999; Chen, 2007) out of the 18 papers reviewed used
1-interchange move. Similarly, 2-swap move can be defined as closing an existing facility and opening up a new
facility or swapping the assigned facilities for two demand points. 8 papers (Abdinnour-Helm, 1998; Ghosh,
2003; Lee and Lee, 2010; Rolland et al., 1996; Salhi, 2002; Prez et al., 2003; Delmaire et al., 1999; Adenso-Diaz
and Rodriguez, 1997) used some variant of the 2-swap move. Our observations are summarized in Table 4 for
quick reference.

Tabu tenure: Tabu tenures are used as short term memory functions in tabu search to prevent the search
process from re-visiting solutions that it has visited in the past few iterations. Tabu search implementations
either keep the tenure value as constant through the process or assign it a value that changes deterministically as
a function of algorithm parameters (such as the number of iterations already executed), or problem parameters
(such as the problem size), or assign it a value generated randomly within a pre-specified range. We refer to
the first two kinds of tabu tenures as deterministic tabu tenure, and the third one as random tabu tenure. A
detailed investigation on the impact of tabu tenure to the solution quality obtained can be found in a paper by
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Move SPL PMP PCP MCLP HLP

1-interchange

(Ohlemuller, 1997;
Sun, 2006;

Al-Sultan and
Al-Fawzan, 1999;
Arostegui et al.,
2006; Delmaire

et al., 1999; Michel
and Hentenryck,

2004; Resende and
Werneck, 2006)

(Rolland et al.,
1996; Salhi, 2002)

(Mozos and Mesa,
2000)

(Silva and Cunha,
2009; Calik et al.,
2009; Chen, 2007)

2-swap

(Ghosh, 2003;
Delmaire et al.,

1999;
Abdinnour-Helm,

1998)

(Rolland et al.,
1996; Salhi, 2002)

(Lee and Lee, 2010;
Adenso-Diaz and
Rodriguez, 1997)

(Abdinnour-Helm,
1998)

Table 4: Moves used in papers with TS implementation

Salhi (Salhi, 2002).
Out of the papers reviewed, we found 10 papers implementing fixed tabu tenure and 5 papers implementing

random tabu tenure. Table 3.1.1 summarizes our findings with regard to the types of tenures used in surveyed
papers.

Tenure Type SPL PMP PCP MCLP HLP

Deterministic Tabu Tenure

Constant (Sun, 2006)
(Mozos and Mesa,

2000)

(Abdinnour-Helm,
1998; Calik et al.,
2009; Chen, 2007)

Deterministic
Variable

(Michel and
Hentenryck, 2004;
Ohlemuller, 1997)

(Salhi, 2002) (Lee and Lee, 2010)
(Silva and Cunha,

2009)

Random Tabu Tenure

Fixed Range

(Al-Sultan and
Al-Fawzan, 1999;
Arostegui et al.,
2006; Delmaire
et al., 1999)

(Adenso-Diaz and
Rodriguez, 1997)

Dependent
Range

(Rolland et al.,
1996)

Table 5: Usage of Tabu Tenure in papers with TS implementation

Intermediate term memory function: Intermediate term memory functions are used in tabu search to
intensify the search process by restricting it to promising regions of the solution space. Apart from the paper by
Sun (Sun, 2006), we could not find any evidence of any other paper explicitly using intermediate term memory
function.

Long term memory function: Long term memory functions are used to diversify the search to new regions
in the solution space. In the survey, we found three distinct strategies being used to diversify the search process:
restarting the search process from initial solutions different from current solution (Arostegui et al., 2006; Prez
et al., 2003; Silva and Cunha, 2009; Delmaire et al., 1999), frequency based penalty to discourage locations
involved in recent moves (Ghosh, 2003; Rolland et al., 1996; Sun, 2006) and change of status in some randomly
selected demand points (Michel and Hentenryck, 2004; Ohlemuller, 1997; Delmaire et al., 1999) for perturba-
tion in current solution. Most of the papers with diversification strategy consider SPL as their problem contexts.

Aspiration criteria: Aspiration criteria are a set of conditions which if satisfied, permits tabu search to
make use of tabu moves to reach neighboring solutions. All the papers in which this component of tabu search
was implemented, tabu status of a particular solution was withdrawn if the solution quality found is the best
so far. In our survey, seven of the papers (e.g. (Ghosh, 2003; Mozos and Mesa, 2000; Rolland et al., 1996;
Silva and Cunha, 2009; Sun, 2006; Delmaire et al., 1999; Salhi, 2002)) used aspiration criteria. Among these
papers, one paper by Salhi (Salhi, 2002) elaborates on different aspiration mechanisms and their implications
on solution quality.

Strategic oscillation: This component of tabu search allows the search process to go to infeasible solution
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Strategies SPL PMP PCP MCLP HLP

Restart with
different initial
solution

(Arostegui et al.,
2006; Delmaire
et al., 1999;
Resende and

Werneck, 2006)

(Silva and Cunha,
2009)

Frequency
based penalty

(Sun, 2006; Ghosh,
2003)

(Rolland et al.,
1996)

Change in
status

(Michel and
Hentenryck, 2004;
Ohlemuller, 1997;
Delmaire et al.,

1999)

Table 6: Long term memory functions in papers with TS implementation

space for some iterations in the hope of reaching a better feasible solution. It is primarily used to move out
from a search region and can be an alternative of diversification strategy in tabu search. We identified four
papers implementing strategic oscillation as mentioned in Table 7. In the paper by Calik et al. (Calik et al.,
2009), if no feasible solution is found in 100 neighboring solutions, an infeasible neighbor is chosen for the next
iteration. In (Rolland et al., 1996), authors allowed infeasible moves with a certain tolerance. As in (Rolland
et al., 1996) for a p-median problem, a slack number is introduced to change the number of facilities from p
to p± slack. In case of capacitated plant location problem (Delmaire et al., 1999), capacities for some opened
facilities were relaxed to reach to a new solution region.

Termination criteria: Typical termination criteria used in tabu search are as follows: maximum number
of iterations (Abdinnour-Helm, 1998; Al-Sultan and Al-Fawzan, 1999; Calik et al., 2009; Rolland et al., 1996;
Salhi, 2002; Adenso-Diaz and Rodriguez, 1997; Lee and Lee, 2010; Silva and Cunha, 2009), maximum number
of iterations without any improvement in solution value (Michel and Hentenryck, 2004; Salhi, 2002; Delmaire
et al., 1999; Arostegui et al., 2006; Resende and Werneck, 2006) or maximum time limit (Arostegui et al., 2006;
Calik et al., 2009; Ghosh, 2003). In some papers the termination criteria are dependent on the problem size,
e.g. maximum iteration limit is a function of the problem size in papers like (Al-Sultan and Al-Fawzan, 1999;
Mozos and Mesa, 2000; Rolland et al., 1996). In (Sun, 2006), author stopped the search process based on
number of time the diversification process had been invoked.

Combination with other metaheuristic: There have been a number of attempts to create hybrid meta-
heuristics in combination with tabu search. In (Abdinnour-Helm, 1998; Topcuoglu et al., 2005), authors used
genetic algorithm on a hub location problem to generate initial solutions. In the paper by Chen (Chen, 2007),
the author proposed a hybrid heuristic by combining tabu search with simulated annealing. In (Ghosh, 2003),
the author used a complete local search along with tabu search on UFLP. Vaithyanathan et al. (Vaithyanathan
et al., 1996) used a combination of tabu search and neural networks to solve the simple plant location problem.
A hybrid multi-start heuristic was developed by Resende and Werneck (2006) by combining tabu search with
local search and path relinking on UFLP.

3.1.2 Summary of tabu search implementation

Table 7 summarizes the findings from the 18 tabu search papers in our survey. Our initial observations from
these papers indicate a lack of papers that address capacity constraints and few papers on multi-commodity
problems. Also, we are unable to find any paper on multi-objective location problem. On the tabu search
implementation side, scarcity of papers implementing intensification techniques, long term memory functions
and strategic oscillation shows further scope of improvement. We feel that further experimental studies are
required to see the impact of including these techniques.
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3.2 Genetic algorithm (GA)

Genetic algorithm is one of the most widely used population based metaheuristics applied to location prob-
lems. Genetic algorithm, proposed by Holland (Holland, 1975), is a stochastic search technique based on the
mechanism used by natural selection and genetics in evolution theory. One of the earliest applications of GA
to location problems was in a paper by Hosage and Goodchild (Hosage and Goodchild, 1986) where they im-
plemented GA on the p-median problem. GA works with a set of feasible solutions called the population. Each
individual solution in the population is called a chromosome and has an assigned fitness value according to the
quality of the solution. Chromosomes evolve through successive iterations, which are called generations. The
population evolves toward better solutions mostly by using three operators: crossover, mutation, and selection
in every generation. In crossover, two chromosomes from the current generation are merged to create one or two
new chromosomes called offsprings for the next generation. In mutation an existing chromosome is modified to
create a new one for the next generation. While crossover and mutation produce new chromosomes or solutions
using the existing one, given a pair of existing solutions, selection operator simply chooses the better solution
for inclusion in the next generation. Selection operator is therefore used to ensure good quality solutions in
future generations. Note that these operators are not applied to each chromosome in the population, instead
the number of chromosomes on which these operators are applied as well as the specific chromosomes on which
they are applied are usually randomly chosen. Typical termination criteria for GA include a maximum number
of generations, a maximum number of generations without any improvement in solution value or a limit on the
maximum computational time.

We present a list of genetic algorithm applications on discrete facility location problems categorized by the
problem variant and problem size in Table 8. As is evident from the table, more researchers have focused on
simple plant location, PMP and MCLP. Within SPL, researchers have mainly focused on the UFLP. A probable
reason for limited focus on CFLP could be that ensuring feasibility of each solution or chromosome is not as
straight forward as in case of uncapacitated problems such as UFLP, PMP, and MCLP. Out of the 17 papers
reviewed, we found that eight papers consider a problem size of less than 500 demand points and six papers
(with no paper in PMP and PCP) address a problem size of more than 1000 demand points.

Problem Size SPL PMP PCP MCLP HLP

≤ 50 (Correa et al., 2004)
(Cunha and Silva,

2007)

(50, 500] (Lai et al., 2010)
(Chaudhry et al.,
2003; Chi et al.,

2011)
(Chi et al., 2011) (Jia et al., 2007)

(Topcuoglu et al.,
2005)

(500, 1000]

(Stanimirovic et al.,
2007; Alp and
Erkut, 2003;

Jaramillo et al.,
2002)

(1000, 2500]
(Jaramillo et al.,
2002; Salhi, 2003;

Kratica et al., 2001)

(Aytug and
Saydam, 2002;
Krzanowski and
Raper, 1999; Jia

et al., 2007)

Table 8: Problem sizes addressed in papers with GA implementation

3.2.1 Genetic algorithm components:

We now consider the components of genetic algorithm, and present our observations from the survey on each
of these components. We also identify some unexplored areas within genetic algorithm and specify scope for
further research.

Population size: In the published literature, we found two distinct ways by which authors determined the
size of the population in their solution approach. The more often used way is to fix the size of the population
to a constant for the entire execution of the algorithm irrespective of the size of the problem instance. The
other method used in the literature sets the size of the population as a function of the problem size (in which
case it remains the same throughout the execution of the algorithm) or sometimes a function of the solution
quality obtained so far (wherein the population size changes with the solution quality). The references of the
papers that use of either one of these criteria are given in Table 9.

As is evident from the Table 9 papers with specific comments on population size, 13 papers (Aytug and
Saydam, 2002; Chaudhry et al., 2003; Correa et al., 2001; Cunha and Silva, 2007; Jourdan and De Weck, 2004;
Kratica et al., 2001; Krzanowski and Raper, 1999; Salhi, 2003; Stanimirovic et al., 2007; Topcuoglu et al., 2005;
Lai et al., 2010) kept the population size as constant irrespective of the problem parameters. The value of this
constant population size varied from 20 (see (Topcuoglu et al., 2005)) to 500 (see (Chaudhry et al., 2003)). 5
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Population
Type

SPL PMP PCP MCLP HLP

Constant
(Kratica et al.,
2001; Lai et al.,

2010; Salhi, 2003)

(Chaudhry et al.,
2003; Correa et al.,
2001; Stanimirovic
et al., 2007; Chi

et al., 2011)

(Chi et al., 2011)

(Aytug and
Saydam, 2002;
Jourdan and

De Weck, 2004;
Krzanowski and
Raper, 1999)

(Cunha and Silva,
2007; Topcuoglu

et al., 2005)

Function of
problem
parameters

(Alp and Erkut,
2003; Correa et al.,
2004; Jaramillo
et al., 2002)

(Jia et al., 2007;
Aytug and Saydam,

2002)

Table 9: Population type used in papers with GA implementation

papers (Aytug and Saydam, 2002; Jaramillo et al., 2002; Jia et al., 2007; Alp and Erkut, 2003) varied population
size as a function of some problem parameter. In the paper by Aytug and Saydam (Aytug and Saydam, 2002),
authors specified population size as 75% of problem size with population size not exceeding 100. In (Jia et al.,
2007), authors made population size dependent on number eligible facilities and maximum number of facilities
to be opened. A similar approach is followed in (Alp and Erkut, 2003), where authors chose population size to
be proportional to the value of the ratio between number of demand points and number of facilities to be opened.

Crossover and mutation probability: All the papers surveyed implemented both crossover and mutation
operator to improve on solution qualities over generations. While the basic idea behind crossover is to retain
good characteristics of parent chromosomes while generating offsprings, mutation is used as a diversification
mechanism to explore the less explored regions of the solution space. In a typical crossover, two chromosome
are chosen randomly from the current population to generate offsprings which are then included in the next
generation. There are many different mechanisms of performing the crossover operation. The most commonly
used mechanism splits each chromosome into two parts, where the position of the split is determined randomly.
The two split parts from one chromosome are then merged with the two split parts from the other chromosome
to generate new chromosomes which are included in the next generation. Another popular implementation of
crossover produces offspring by randomly choosing each of the bit value from one of the two parents. Minor
variations exist between papers in ways of implementation. The number of pairs of chromosomes that undergo
crossover in a generation depends on crossover probability. While crossover is a binary operator requiring two
parents, mutation is a unary operator. In mutation, each bit of a chromosome is switched to other possible
values than the existing one based on a probability. As mutation is a tool to induce diversification, mutation
probability is generally quite small. Again, there are various ways authors implemented mutation in published
papers keeping the basic concept same. The crossover probability is much higher (in some cases, as high as
0.99 (Cunha and Silva, 2007)) than mutation probability. In the paper by Jia et al. (Jia et al., 2007), authors
investigated the dependency of crossover rate and population size. From the experimental results, they inferred
that 35% crossover rate is good with population size of 100 or less whereas with population size of more than
100, 15 − 25% crossover rate is more appropriate. Summary of crossover probabilities used in various papers
is reported in Table 10. Last row in the table lists the papers which mention usage of crossover techniques
but corresponding probability values are not given explicitly. Most of the papers implement standard crossover
mechanism with exceptions like (Alp and Erkut, 2003; Correa et al., 2004). Impact of different crossover
techniques were experimented in the paper by Aytug and Saydam (Aytug and Saydam, 2002).

Most of the published papers include mutation as part of their GA implementation. Typically the mutation
probability value changes between 0.005 and 0.8 with most of the papers taking very low values (0.01 to 0.1).
Table 11 summarizes our findings by listing papers using different mutation probability values. Last row in
the table lists the papers which mention usage of crossover techniques but corresponding probability values are
not given explicitly. By variable mutation, we refer to a paper by Stanimirovic et al. (Stanimirovic et al.,
2007) where authors specified mutation probability as a function of problem size. In the paper by Jaramillo et
al. (Jaramillo et al., 2002), authors suggested usage of dynamic mutation rate over generations depending on
the rate at which GA converges to the optimal solution. Similarly in (Krzanowski and Raper, 1999), authors
reported different mutation probabilities for different problem sizes.

Termination criteria: Three types of termination criteria are used in the literature surveyed: (TC1)
maximum number of generations, (TC2) maximum number of generations without any improvement in the
best solution value and (TC3) the execution time. Table 12 provides a summary of different termination
criteria used in surveyed papers with most papers using maximum number of generations to terminate GA.
Some Papers such as (Jia et al., 2007; Jaramillo et al., 2002; Chaudhry et al., 2003; Stanimirovic et al., 2007;
Topcuoglu et al., 2005) combine more than one termination criteria. Within the papers in which the maximum
number of generations was used as termination criteria, some authors fixed it to a constant independent of
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Crossover
Probability

SPL PMP PCP MCLP HLP

(0, 0.2] (Correa et al., 2004)

(0.2, 0.4]
(Jaramillo et al.,

2002)
(Jaramillo et al.,

2002)
(Jia et al., 2007)

(0.4 − 0.6]
(Stanimirovic et al.,

2007)
(Krzanowski and
Raper, 1999)

(Topcuoglu et al.,
2005)

(0.6 − 0.8] (Lai et al., 2010)
(Aytug and

Saydam, 2002)

(0.8 − 1.0]
(Kratica et al.,

2001; Salhi, 2003)

(Chaudhry et al.,
2003; Stanimirovic

et al., 2007)

(Cunha and Silva,
2007)

Not mentioned
(Alp and Erkut,
2003; Chi et al.,

2011)
(Chi et al., 2011)

Table 10: Crossover probabilities in papers with GA implementation

Mutation
Probability

SPL PMP PCP MCLP HLP

(0, 0.1]
(Kratica et al.,
2001; Lai et al.,

2010)

(Correa et al., 2004;
Chaudhry et al.,

2003)

(Aytug and
Saydam, 2002; Jia

et al., 2007;
Jourdan and

De Weck, 2004)

(Cunha and Silva,
2007)

(0.1, 0.2]
(Jaramillo et al.,

2002)

(0.2, 1.0]
(Jaramillo et al.,
2002; Salhi, 2003)

(Krzanowski and
Raper, 1999)

(Topcuoglu et al.,
2005)

V ariable
(Stanimirovic et al.,

2007)
Not mentioned (Chi et al., 2011)

Table 11: Mutation probabilities in papers with GA implementation

problem size whereas some other authors (Salhi, 2003; Alp and Erkut, 2003) made it dependent on problem
size.

Termination
Criteria

SPL PMP PCP MCLP HLP

TC1
(Salhi, 2003;

Jaramillo et al.,
2002)

(Alp and Erkut,
2003; Chaudhry

et al., 2003; Correa
et al., 2004;

Jaramillo et al.,
2002; Stanimirovic

et al., 2007)

(Aytug and
Saydam, 2002; Jia

et al., 2007;
Jourdan and

De Weck, 2004)

(Cunha and Silva,
2007; Topcuoglu

et al., 2005)

TC2
(Kratica et al.,

2001)

(Jaramillo et al.,
2002; Stanimirovic

et al., 2007)
(Jia et al., 2007)

(Topcuoglu et al.,
2005)

TC3
(Chaudhry et al.,

2003)

Table 12: Termination criteria used in papers with GA implementation

3.2.2 Summary of implementation:

Table 13 summarizes our observations from the 11 papers reviewed. As mentioned earlier, we report maximum
number of demand points considered in the paper under the problem size column. Under population size
column, we denote Fixed when a fixed number is considered as population size or Variable when the number
varies with problem parameters.
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As is evident from the table, there is a lack of GA applications in the area of single-source CFLP and
multi-commodity location problems. For multi-objective location problems, we could find only one paper (Chi
et al., 2011). We also observed that a mix of different benchmark problems and real life problems have been
used for testing the effectiveness of the proposed algorithms. We also observed that most of the papers do not
give rationale for choosing any particular implementation of the three operators, also the impact of variable
population size, crossover and mutation rates is not extensively researched.

3.3 Particle swarm optimization (PSO)

Particle Swarm Optimization is a population based evolutionary computational technique developed by Kennedy
and Eberhart (Kennedy and Eberhart, 1995) in 1995. The concept emerged while simulating the unpredictable
choreography of bird flock. Similar to genetic algorithm, PSO starts with a set of random feasible solutions
(called particles) and moves through the problem space in search of a better solution (Eberhart et al., 1996).
In the class of location problems, the initial applications of PSO were on continuous location problem. In these
problems, each particle keeps track of coordinates of opened facilities in the problem space. Each particle is
also assigned a random component, called velocity, to change the coordinate to move toward a better solution.
Each particle also keeps track of its best solution achieved so far (called pbest). The best solution achieved
across all solutions (particles) is stored in gbest. In every iteration (generation) of PSO, solutions are changed
using velocity component. The velocity is updated in every iteration by taking certain characteristics of pbest
and gbest solutions weighted by a component called acceleration. There is also a local version of PSO in which,
in addition to pbest, each particle keeps track of the best solution obtained in the local neighborhood called
lbest. Typical terminating conditions for PSO include maximum number of iterations, maximum number of
iterations without any improvement in solution value or maximum computational time.

In this paper, we provide a brief summary of applications of PSO to discrete facility location problems.
Lack of papers in this area has restricted us to do a limited survey in comparison to the other metaheuristics.
Application of PSO to continuous facility location problems is straightforward and hence is evident by the
larger number of papers published (Guner and Sevkil, 2008; Sevkil and Gurner, 2006). When implementing
PSO on discrete facility location problems, the implementation process is not straightforward. In the revised
framework, instead of using velocity to change coordinates of the location, operators like 1-change crossover are
used (Guner and Sevkil, 2008) along with pbest and gbest solutions to develop new solutions from the existing
set of solutions.

Within the papers surveyed on PSO implementation for discrete location problems, most of the papers use
uncapacitated facility location as the problem context, e.g. (Guner and Sevkil, 2008; Sevkil and Gurner, 2006;
Wang et al., 2008). Some other variants such as multiple facility location problem with competition (Yano
et al., 2008), multi-objective facility location problems (Yapicioglu et al., 2007; Uno et al., 2007), capacitated
facility location problems (Wang and Watada, 2012), p-median problems (Garica and Perez, 2008) are also
addressed in the published literature.

Due to the limited number of implementations for each problem variant, we do not provide details of PSO
implementation for each paper as we did for other metaheuristics. Given the number of papers published in
reputed journals, we think PSO has not matured to the point that it can outdo other metaheuristics applied
to discrete location problems. This may be due to internal limitation in the heuristic or it may indicate an
unexplored area - it is yet to be decided.

3.4 Scatter Search

Originally proposed by Fred Glover (Glover, 1977, 1998), scatter Search is a population based evolutionary
method which has been successfully applied to many hard combinatorial optimization problems (Marti et al.,
2006). It maintains a set of solutions called the reference set, and iteratively combines solutions in the reference
set to generate new solutions, which are in turn used to update the reference set. The method terminates when
either the set of solutions does not change or after a pre-specified time limit or after a pre-specified number of
iterations.

Although the framework of scatter search appears similar to that of genetic algorithm, the basic principles
on which the two methods work are significantly different. Unlike genetic algorithm, scatter search uses a much
smaller reference set and applies more systematic procedures to ensure diversity and coverage of the solution
space. Similarly, while in genetic algorithm solutions are chosen randomly for crossover, scatter search uses a
more systematic and exhaustive procedure to choose the solutions for combination. It also uses intensification
strategies such as local search, tabu search etc. to improve upon each solution generated by the combination
method.

The method starts with a seed solution which can either be generated randomly or using any method that
exploits the problem structure (Keskin and Uster, 2007b). The seed solution is then used to generate a popu-
lation of diverse solutions by iteratively using a diversification generation method (Glover, 1977, 1998) and an
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improvement method, which generally employs local search or tabu search with problem specific neighborhood
structure, although other strategies also exist (see (Glover, 1977, 1998)). The improved solution, thus obtained,
is added to the population if it does not already exist.

The reference set is then built by first choosing a pre-specified number of good quality solutions from the
population. A set of diverse solutions from the population is then chosen by the following procedure. Given
a metric to measure the distance between two solutions, the solution in the population which maximizes the
minimum distance between this solution and any solution in the reference set is added to the reference set.

Once the initial reference set is generated, a subset generation method is used to generate subsets of the
reference sets. The solutions in these subsets are combined to generate new solutions. With these new solutions,
the reference set is updated using the reference set update method. This method replaces any worse quality
solutions in the current reference set by a newly generated solution. Similarly the reference set also replaces
diversified solutions, if the newly generated solutions are more diversified than those in the current reference
set.

The subset generation method, improvement method and the reference set update methods are applied
iteratively for a pre-specified time limit or a pre-specified number of iterations or until the reference set does
not change. The method then outputs the best solution from the reference set.

If compared with number of papers that implemented GA or tabu search on discrete location problems,
number of papers that report scatter search implementation is significantly less. Hence we follow a different
representation schema to describe the literature on scatter search by presenting an aggregate view and paper-
wise details together while explaining problem characteristics or metaheuristic components.

Table 14 presents the different variants of discrete location problems along with the problem size on which
scatter search has been applied. From the Table, it is evident that the p-median problem and simple plant
location problems are two primarily used problem categories in papers implemented scatter search on location
problems.

Problem Size SPL PMP PCP MCLP HLP

≤ 50
(Du and Evans,

2008)

(50, 500]
(Contreras and
Diaz, 2008)

(Scheuerer and
Wendolsky, 2006)

(Pacheco and
Casado, 2005)

(Keskin and Uster,
2007b,a)

(500, 1000]
(Diaz and

Fernandez, 2006)

(1000, 2500]
(Garcia-Lopez
et al., 2003)

Table 14: Problem sizes in papers with SS implementation

As can be noted from the table only two papers address problems of size of more than 500 nodes. Also only
two papers (Du and Evans, 2008; Contreras and Diaz, 2008) attempted scatter search on simple facility location,
which is not so commonly seen in other metaheuristics. Unlike the papers surveyed in previous sections, most
of the papers address capacitated location problems. There is only one paper dealing with multiple products
and no paper with multiple objectives.

3.4.1 Scatter Search Components

In this section, we describe the characteristics of the scatter search implementation. Table 18 presents the imple-
mentation details for each of the five components of scatter search along with the type of solution encoding used.

Initial solution generation: Seed solution is used for generating the population of diverse and good quality
initial solutions which are then used for combination. While Scheuerer and Wendolsky (Scheuerer and Wen-
dolsky, 2006) used a construction heuristic to ensure diversity, Keskin and Uster used randomly generated seed
(Keskin and Uster, 2007a) and a combination of random and greedy heuristic (Keskin and Uster, 2007b) for
initial solution. Many papers (Garcia-Lopez et al., 2003; Pacheco and Casado, 2005; Diaz and Fernandez, 2006;
Contreras and Diaz, 2008; Du and Evans, 2008) did not use a seed solution instead generated the population
directly.

Diversification generation method: In a paper by Garcia-Lopez et al. (Garcia-Lopez et al., 2003), authors
used a diversity based multi-start construction heuristic to generate the initial population. While the heuris-
tic used by them (Garcia-Lopez et al., 2003) emphasizes both the solution quality and diversity, the GRASP
based heuristics used in papers like (Pacheco and Casado, 2005; Diaz and Fernandez, 2006; Contreras and Diaz,
2008) concentrate only on the solution quality and the adaptive memory based heuristic used by Scheuerer
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and Wendolsky (Scheuerer and Wendolsky, 2006) concentrate only on solution diversity. In (Keskin and Uster,
2007b) and (Keskin and Uster, 2007a), a construction heuristic proposed by (Glover, 1998) is used to generate
the initial population. While all the above papers used systematic methods to generate the initial population,
(Du and Evans, 2008) randomly generated the initial population.

Strategies SPL PMP PCP MCLP HLP

Construction
(Garcia-Lopez
et al., 2003)

(Keskin and Uster,
2007b,a)

(single/multi-
start)

GRASP
(Contreras and
Diaz, 2008)

(Diaz and
Fernandez, 2006)

(Pacheco and
Casado, 2005)

Random
(Du and Evans,

2008)
Adaptive
memory

(Scheuerer and
Wendolsky, 2006)

Table 15: Diversification generation methods in papers with SS implementation

Improvement method: Improvement methods are used for ensuring feasibility of a solution and to intensify
the search around this solution. They can be applied both to the solutions generated for inclusion in the initial
population and to the solutions generated by combining two or more solutions. Most of the scatter search
implementations for facility location problems except (Pacheco and Casado, 2005; Du and Evans, 2008) use
local search with different neighborhood structures as improvement methods. While (Du and Evans, 2008) uses
two heuristics only to balance the capacities allocated to facilities, and does not use any specific improvement
method, (Pacheco and Casado, 2005) uses alternate and exchange heuristics to improve the solutions. Local
search based improvement methods use shift and swap neighborhoods. For instance, (Garcia-Lopez et al., 2003;
Keskin and Uster, 2007b) used local search with swap neighborhood, (Diaz and Fernandez, 2006; Scheuerer
and Wendolsky, 2006; Contreras and Diaz, 2008) used local search with shift and swap neighborhood. Some
implementations (Keskin and Uster, 2007b,a; Contreras and Diaz, 2008) further improve the quality of the best
solution output by the local search based improvement method by using path relinking (Keskin and Uster,
2007b,a) and tabu search (Contreras and Diaz, 2008).

Strategies SPL PMP PCP MCLP HLP

Shift
(Contreras and
Diaz, 2008)

(Diaz and
Fernandez, 2006;
Scheuerer and

Wendolsky, 2006)

Swap
(Contreras and
Diaz, 2008)

(Garcia-Lopez
et al., 2003; Diaz
and Fernandez,

2006; Scheuerer and
Wendolsky, 2006)

(Keskin and Uster,
2007b)

Path relinking
(Keskin and Uster,

2007b,a)

Table 16: Improvement methods in papers with SS implementation

Reference set generation and update method: Generally the reference set is built by selecting a pre-
specified number b1 of good quality solutions and a pre-specified number b2 of diversified solutions. For instance,
to build the reference set (Garcia-Lopez et al., 2003; Pacheco and Casado, 2005; Scheuerer and Wendolsky,
2006; Keskin and Uster, 2007b,a) choose b1 best solutions in terms of their cost and and b2 most diversified
solutions with respect to the solutions already in the reference set. While the previously mentioned papers use
a combination of good quality and diversified solutions, (Du and Evans, 2008; Contreras and Diaz, 2008) use
only good quality solutions to build the reference set.

Many implementations (Scheuerer and Wendolsky, 2006; Keskin and Uster, 2007b,a; Du and Evans, 2008)
strive for the balance between the quality of solutions and diversity of solutions during the reference set update
as well. In these implementations, if the solution obtained by the combination method is either better than an
existing solution in the b1 best quality solutions in the reference set, or is more diversified than a solution in
the b2 most diversified solutions in reference set, then this solution replaces an existing worse solution in the
reference set. Some papers like (Pacheco and Casado, 2005; Du and Evans, 2008; Contreras and Diaz, 2008)
use the quality of the solution as the only criterion for updating the reference set.

Subset generation method: To generate the subsets of solutions that are combined together to generate
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new solutions, (Pacheco and Casado, 2005; Du and Evans, 2008) consider all possible subsets of size two, (Diaz
and Fernandez, 2006; Contreras and Diaz, 2008) consider all possible subsets of size two and three of the
reference set. (Scheuerer and Wendolsky, 2006) considers all possible subsets of size two and from these subsets
generated subsets of size three by adding the best solution not present in the subset to the subset. (Keskin and
Uster, 2007b,a) use subsets of sizes three and four.

Subset Size SPL PMP PCP MCLP HLP

2
(Du and Evans,

2008; Contreras and
Diaz, 2008)

(Diaz and
Fernandez, 2006)

(Pacheco and
Casado, 2005)

3
(Contreras and
Diaz, 2008)

(Diaz and
Fernandez, 2006)

(Keskin and Uster,
2007b,a)

4
(Keskin and Uster,

2007b,a)

Table 17: Strategies for subset generation in papers with SS implementation

Solution combination method: To combine the solutions in the subsets generated by the subset generation
method, (Keskin and Uster, 2007b,a) use a weighted linear combination wherein the reciprocals of the objec-
tive function values are used as weights. (Garcia-Lopez et al., 2003) constructs a partial solution by opening
the facilities common to all the solutions in the subset. They then identify a location farthest to this partial
solution and randomly choose a location that is within a given radius of this farthest location. This procedure
is repeated until the solution is complete. While (Garcia-Lopez et al., 2003) uses combination by construction,
(Diaz and Fernandez, 2006; Contreras and Diaz, 2008) use combination by destruction. To generate a new
solution through combination, (Diaz and Fernandez, 2006; Contreras and Diaz, 2008) initially assign clients
to facilities that are open in at least one solution in the subset and then systematically reduce the number of
open facilities. (Du and Evans, 2008) uses a random solution combination method wherein the probability of
turning a bit to one depends on the fixed costs of these two solutions. Combination by voting (Scheuerer and
Wendolsky, 2006) and combination by path relinking (Pacheco and Casado, 2005) are also used to generate
new solutions.

Advanced strategies: The template for scatter search (Marti et al., 2006) proposes many advanced strategies
for better exploration of the solution space including dynamic reference set updating, reference set rebuilding,
reference set tiers, diversity control, use of memory etc. While some of these have been used in context of
facility location problems, others have not yet been explored. For instance, (Garcia-Lopez et al., 2003; Pacheco
and Casado, 2005; Scheuerer and Wendolsky, 2006) use reference set rebuilding for preventing premature con-
vergence of scatter search. In scatter search, if it is not possible to generate new subsets before the termination
criteria are satisfied, diversification method is again called upon to bring in new solutions and the process
restarts.

Dynamic reference set updating is used for better exploration of the solution space by allowing more solutions
to be combined (Keskin and Uster, 2007b). Another advanced strategy that has been used in context of facility
location problems, is usage of adaptive memory. For instance, (Pacheco and Casado, 2005; Scheuerer and
Wendolsky, 2006) use adaptive memory to keep track of the number of solutions in the reference set in which
a particular facility has been opened.

3.4.2 Summary of scatter search implementation

We observed scatter search application as one of the emerging research interests in metaheuristic applications
on location problems. It has its limitations though in terms of problem characteristics addressed and method-
ologies implemented to tackle location problems. Like in the papers on scatter search implementation, very few
papers are available to address the following problem characteristics: large problem size, multiple commodities,
multiple objectives etc. Similarly in the metaheuristic implementation part, various issues are yet to be tested.
Improvement method in scatter search consists of mostly local search in published papers, with scope of intro-
ducing advanced local search, e.g. tabu search etc., still remains. For diversification generation, GRASP and
random search are cited in most of the papers. Other diversification methodologies (see (Glover, 1998)) are
not explored properly apart from papers by Keskin and Ustar (Keskin and Uster, 2007b,a). While updating
reference sets, it is suggested to include solutions based on quality and diversity. In some papers (Contreras
and Diaz, 2008; Du and Evans, 2008), authors considered only quality to include solutions in the reference set.
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4 Conclusion

This paper highlights some of untouched areas in location problems along with some implementation gaps of
four metaheuristics in recent practice: genetic algorithm, tabu search, particle swarm optimization and scatter
search. We reported some observations while summarizing each metaheuristic in its respective section. In
this section, we highlight some common issues found across sections which may be of interest to the research
community. In the problem context area, the problem size is still restricted to a range of 2000 to 2500 nodes
with only 9 papers addressing problem size of more than 1000 nodes. Apart from scatter search literature,
capacitated facility location problems are scarcely handled in the literature. Also multi-commodity, multi-
objective facility locations are rarely taken as testbed problems which creates another interesting area for
researchers to work. Among the problem categories, p-center is used as problem context in only 3 papers.

Regarding changes in metaheuristic implementation, we found some gaps specific to each metaheuristic
which can be addressed by systematic experimental study. In genetic algorithm, it is interesting to see the
effectiveness of variable population size, crossover and mutation rate on the quality of final solution obtained.
In tabu search, we did not find papers to investigate the effect of intermediate term memory function etc.
Similarly scatter search also requires some experimental study for better evaluation of other improvement
methods, diversification mechanisms etc. In our view, these aspects contain the research prospects to guide
future work on this area.
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