

1

Indian Institute of Management Calcutta

Working Paper Series

WPS No. 749
July 2014

Determining the Deadness Levels of Packages in Online Multi-unit Combinatorial Auctions

Anup K Sen
Professor, Indian Institute of Management Calcutta

D. H. Road, Joka P.O.Kolkata 700 104
sen@iimcal.ac.in

Amitava Bagchi
Professor, Heritage Institute of Technology

East Kolkata Township, Anandapur, Kolkata 700107
amitava.bagchi@heritageit.edu

mailto:sen@iimcal.ac.in�
mailto:amitava.bagchi@heritageit.edu�

1

Determining the Deadness Levels of Packages in Online Multi-unit Combinatorial Auctions

Anup K Sen Amitava Bagchi
 Indian Institute of Management Calcutta Heritage Institute of Technology Kolkata

Abstract

In online iterative combinatorial auctions, the deadness level (DL) of a package serves as a tight
lower bound on a fresh bid that can be meaningfully placed on the package. Computational
methods exist for determining the DL values of packages in the single-unit case. But when there
are multiple identical units of items, these levels are hard to determine, and no closed form
expression or computational method has been proposed as yet. This note examines the properties
of package DLs in the multi-unit case; it provides theoretical results with supporting illustrative
examples and presents for the first time an exact method for computing DL values. This could
help to promote more widespread use in industry of such online auctions.

Keywords: Multi-unit combinatorial auctions, online combinatorial auctions, deadness levels
(DLs), intelligent agent-based systems

1. INTRODUCTION

 When complementary items are put on auction, bidders must be permitted to bid on packages
(i.e., bundles) of items. In such combinatorial auctions (CAs), bidders need guidance from the
seller to estimate package valuations correctly. When only one unit of each item is on auction,
we can make use of the notion of ‘quotes’ (Sandholm 2002) to define a lower bound (Deadness
Level DL) and an upper bound (Winning Level WL) for each package. These bounds can be
readily computed, enabling bidders to place bids in the intermediate region between them. But
when multiple identical units of items are on auction, no method is currently available for
computing the exact value of the DL of a package.
 The best known example of the single-unit CA is the FCC spectrum auction conducted by the
U.S. government. This auction is multi-round, and information about its current state is provided
to bidders in the inter-round breaks (Brunner et al., 2010; Kagel et al., 2010). Our interest,
however, is in online (i.e., continuous), iterative (Parkes, 2006), multi-unit eBay-like auctions, in
which, in addition to the maximization of the seller’s revenue, an important objective is bidder
satisfaction and high bidder participation. A bidder must be allowed to join and leave the auction
at any time, which compels the seller to provide information feedback after each bid in the form
of a lower bound (Multi-unit Deadness Level MDL) and upper bound (Multi-unit Winning Level
MWL) on packages of interest. Such auctions have a pre-announced duration, and winners are
determined at termination with the help of a WDP (Winner Determination Problem) algorithm
(Sandholm, 2006).

Multi-unit CAs differ from single-unit CAs in that a package p consists of a multi-set of
items, and more than one bid on p can get included in a winning combination. This forces a more
careful interpretation of the meanings of the deadness and winning levels. Significant cost
reductions are possible in the procurement of goods and materials if multi-unit CAs can be
efficiently implemented. The major difficulty lies in determining an exact value of the deadness
level MDL(p) of a package p, and this problem has remained unsolved for some years. In this
paper we propose a method for the first time for computing MDL(p) accurately; this will make it

2

possible for a bidder to restrict a bid B on a package p to the “safe” range between MDL(p) and
MWL(p), thereby keeping (p,B) in contention for inclusion in winning combinations in future.

The objectives of this paper are twofold:

• To establish the properties of the Deadness and Winning Levels (MDLs and MWLs) of
packages in the multi-unit case; these properties are often interesting and sometimes
differ from the ones in the single-unit case;

• To describe a scheme for the exact computation of the MDL of a package at any given
instant during an online multi-unit CA; we provide a programming procedure and give
some computational results.

2. BOUNDS ON MEANINGFUL BIDS

Let S = { Xα, Yβ, . . . } be a multi-set of items on auction; here S consists of α identical units
of item X, β identical units of item Y, and so on. The auction starts at time instant 1 and ends at
some time instant T > 1. Bids b(q1,1), b(q2,2),…, b(qT,T), having non-negative integer values, are
placed by bidders on packages q1, q2,…, qT at successive integer time instants 1, 2,..., T, where
for 1 < t < T, qt is a multi-set that is a subset of S. The packages q1, q2,…, qT are not necessarily
distinct. (Bids arrive at irregular time intervals; the instants are numbered 1, 2, 3, … , just for
convenience.)
Definition 1: Maxfit(p,t): Let p be any package (i.e., p is any subset of S). We view p as a
container and insert the packages qk, 1 < k < t, into p in a non-overlapping manner, no bid being
used more than once, ensuring for each item that the number of units put into p does not exceed
the capacity of p. Maxfit(p,t) is the maximum sum obtainable of the corresponding bid values.

While no bid is used more than once when filling up p, the same package (occurring as two
different qk’s in the bid sequence) might get included more than once in p, which cannot happen
in the single-unit case. Thus more than one copy of a package can be simultaneously active with
its own bid value, and these copies can be considered independently for inclusion in the
(provisional) winning combinations. Other copies of the package might be inactive and not play
any further role in the auction (see Example 1 below).

Definition 2: a) MWL(p,t): The Winning Level of a package p at time instant t is the smallest
(non-negative) bid B on a copy of p at instant t+1 that makes the pair (p,B) a member of a
provisional winning combination of packages at instant t+1.

The definition is the same as in the single-unit case (Adomavicius and Gupta, 2005), except
that more than one copy of p might be simultaneously active.

b) MDL(p,t): The Deadness Level of a package p at time instant t is the smallest bid B on a copy
of p at instant t+1 such that there exists a (hypothetical, perhaps empty) sequence of bids that
puts the pair (p,B) in a provisional winning combination of packages at some instant t1 > t+1.
 A bid of value B = MWL(p,t) on p at instant t+1 ensures that the pair (p,B) is in a winning
combination at instant t+1, while a bid of value B’ = MDL(p,t) on p at instant t+1 implies that
there exists a continuation of the auction such that the pair (p,B’) is in a winning combination at
a future instant. When we say ‘(p,B) is in a winning combination’ we imply that any ties in
value are resolved in favor of (p,B); in order for (p,B) to be in a winning combination
unequivocally, B must exceed MWL(p,t) (or MDL(p,t) as the case may be) by a small amount
(say the bid increment).

3

Example 1: Let the multi-set S of items consist of 8 units of X and 8 units of Y, and suppose that
T > 5. For ease of notation we write S = X8Y8. Let the given sequence of bids be as follows:
b(X2Y2,1) =20, b(X2Y,2) = 25, b(X,3) =30, b(X3Y5,4) = 100, b(XY2,5) = 35. This says the first bid
of value 20 has been placed on a package consisting of two units of X and two units of Y, the
second bid of value 25 has been placed on a package consisting of two units of X and one unit of
Y, and so on. Let p = X2Y2; then S\p = X6Y6 (see Figure 1). The values of MWL(p) and MDL(p)
after each bid are shown in Table 1.

Figure 1: Regions p and S\p in S = X8Y8

At the end of instant 1 there is only one package and it fits into p as well as into S\p. Suppose
a bid of 0 is placed on a copy of p at instant 2. This copy of p fits into S in addition to the
existing package X2Y2, and the two together have a total bid value of 20, so MWL(p,1) = 0.
Consequently, MDL(p,1) = 0 as well. At instant 2, a bid of 25 is placed on the package X2Y.
MWL (p,2) remains 0 because a copy of p with bid 0 will fit into S along with the two packages
X2Y2 and X2Y, and the three packages together will have a total bid value of 45.

S = X8Y8, p = X2Y2, S\p = X6Y6

Instant Package Bid Maxfit(S) Maxfit(p) Maxfit(S\p) MWL(p) MDL(p)

1 X2Y2 20 20 20 20 0 0
2 X2Y 25 45 25 45 0 0
3 X 30 75 30 75 0 0
4 X3Y5 100 175 30 155 20 20
5 XY2 35 190 65 155 35 25

 Table 1: Values of MWL(p) and MDL(p) in Example 1
At instant 3 a bid of value 30 is placed on the package X. Maxfit(S,3) and Maxfit(S\p,3) both

become 75, and Maxfit(p,3) becomes 30. If we now place a bid of 0 on a copy of p at instant 4,
this will fit into S, so MWL(p,3) and MDL(p,3) both remain 0. At instant 4, the bid of value 100
on X3Y5 increases Maxfit(S) to 175, but Maxfit(S\p) is only 155 because the four packages do not
all fit into S\p. So MWL(p,4) = 20 since a bid of 20 on p now makes (p,20) a part of the winning
combination { (p,20), (X2Y,25), (X,30), (X3Y5,100) }. MDL(p,4) is also 20 because a bid of
(X2Y2,20) at instant 5 makes it a part of winning combination.

At instant 5, the bid of 35 on the package XY2 changes Maxfit(S) to 190. MWL(p,5) increases
to 35, but MDL(p,5) becomes 25 because a bid of 25 on p at instant 5 followed by a bid of 100
on X4Y4 does not change Maxfit(S) and yields the winning combination { (X2Y2, 25), (X,30)
,(XY2,35), (X4Y4,100) }. Here two copies of p, namely, (X2Y2, 25) and { (X,30) ,(XY2,35) }, are
part of the winning combination. We note that: i) the original bid of 20 on p = X2Y2 remains
active until instant 4, but at instant 5 when MDL(p) increases to 25, the bid (X2Y2,20) becomes
inactive and plays no further role in the auction; ii) at instant 5 there are two bids that together fit
into p with a total value of 65. □

p = X2Y2 S\p = X6Y6

4

2.1 BASIC PROPERTIES

We now list some basic theoretical properties of online multi-unit CAs. In the single-unit
case, the following results are known to hold (Adomavicius and Gupta, 2005):

i) Maxfit(p,t) + Maxfit(S\p,t) < Maxfit(S,t);
ii) WL(p,t) = Maxfit(S,t) – Maxfit(S\p,t);
iii) DL(p,t) = Maxfit(p,t);
iv) DL(p,t) ≤ WL(p,t);
v) DL(p,t) is non-decreasing in t.
These results do not all generalize to the multi-unit case. For example, (i) and (iii) are no longer
valid. In Table 1, at all five instants, MDL(p,t) < Maxfit(p,t) and therefore MDL(p,t) cannot be
directly determined by computing Maxfit(p,t). In addition, Maxfit(p,t) + Maxfit(S\p,t) >
Maxfit(S,t), because some of the packages on which bids have been placed fit into both p and S\p.
But (ii), (iv) and (v) continue to hold as shown below.

Claim 1: MDL(p,t) < MWL(p,t) = Maxfit(S,t) - Maxfit(S\p,t).
Proof: The claim follows from the definitions of MDL(p,t) and MWL(p,t). Clearly, MDL(p,t) can
never exceed MWL(p,t). If a bid B ≥ (Maxfit(S,t) – Maxfit(S\p,t)) is placed on p at instant t+1,
then (p,B) becomes a part of the provisional winning combination. □

Claim 2: If a bid of value B < MDL(p,t) is placed on p at instant t+1, then the pair (p,B) becomes
inactive and plays no further role in the auction.
Proof: By the definition of MDL(p,t), the bid (p,B) cannot form a part of any winning
combination in future. □

Claim 3: For any package p, MDL(p,t) is non-decreasing in t.
Proof: Consider any instant k, and suppose that MDL(p,k) = A and MDL(p,k+1) = B. We have
to show that A < B. We argue as follows. All the bids that have been placed at all instants < k
remain in consideration at instant k+1; however, one additional bid b(qk+1,k+1) is placed at
instant k+1. By definition, A is the smallest bid on p at instant k+1 for which there exists a
sequence of bids that puts (p,A) in the (provisional) winning combination at a future instant.
When computing A, all possible future sequences of bids placed at instants > k+1 are taken into
consideration. The bid b(qk+1,k+1) that actually gets placed at instant k+1 is only a particular
case, and it imposes a constraint on the value of B but not on that of A, so A < B. □

3. COMPUTATION OF MDL VALUES

No systematic procedure for computing the MDL value of a package p at instant t in a multi-unit
CA has been suggested as yet. Here we propose for the first time a method for determining
MDL(p,t) exactly. It works as follows: From the set Δt = { b(qk,k), 1 < k < t } of bids that have
been placed in the auction at instants < t, create all possible subsets of bids that fit into S\p. Let
these subsets be p1, p2, ..., pj (viewed as packages) in arbitrary order. Every pk has an associated
value B1(k) which is the sum of the bid values of its constituent bids. Suppose there is a bid B on
p and a bid B2(k) on package qk = (S\p)\pk. Then p + pk + qk = S, and we try to achieve B + B1(k)
+ B2(k) = Maxfit(S,t) (see Figure 2). To get a lower bound on the value of B, we eliminate from
the set Δt those packages that have been used in computing B1(k), then pack into p as many as
possible of the remaining packages in Δt so as to maximize the total value of the corresponding
bids. MDL(p,t) is obtained by varying pk to find the smallest value of B that satisfies the above

5

conditions (see Function Compute_MDL and Example 2 below).

Figure 2: Partition of S into Three Parts

// The function Compute_MDL computes MDL(p,t) from the set of bids Δt = { b(qk,k), 1 < k < t }

function Compute_MDL(package p, instant t, set of bids Δt)
{ let MDL(p,t) = ∞ ;
 compute M = Maxfit(S) from the set of bids Δt;
 for every possible package r that fits into S\p and consists of a subset of packages from Δt

{ let s = (S\p)\r; // note that p + r + s = S
 let B1 = sum of the bid values of the packages in r;

place a hypothetical bid (s, M - B1);
compute newM = Maxfit(S) from the set Δt U { (s, M - B1) };
compute MDL(p,t) = min { MDL(p,t), newM – M };

 }
 return MDL(p,t);
}

3.1 COMPUTATIONAL RESULTS

We now give some computational results that illustrate interesting aspects of Compute_MDL().

Example 2: Suppose S = X9Y9, p = X3Y3 and T > 10; then S\p = X6Y6. Let b(X3,1) = 45, b(Y2,2) =
50 and b(X2Y2,3) = 75 be the first three bids. Table 2 shows the other bids. Values of r, s, B1, B2,
M and newM are also shown. Consider instant 4. A bid of 50 on p at instant 5 makes p a part of
the provisional winning combination because we can place a (hypothetical) bid of 70 on package
XY that will make Maxfit(S) = 255. Thus MDL(p,4) = 255 – 205 = 50. MDL(p,t) values at other
instants are similarly obtained. □

The data in Table 2 suggest the following observations:
• MDL(p,t) is non-decreasing in t, but not MWL(p,t).
• MDL(p) changes even when bids are placed on packages that do not fit into p; e.g., bids on

X4Y3 or X2Y4 change MDL(p,t). This is not possible in the single-unit case.
• At instant 6, MDL(p,t) is 80, but no subset of existing bid values add up to 80, the closest

such value being 75. This curious situation cannot arise in the single-unit case.
• There is no apparent pattern in the manner in which the package r changes with time. For

example, r = X5Y5 at instant 4, but r = Y5 at instants 5 and 6, and r = X4Y at instant 7. How
can we explain these sudden changes in r?

• The bid (s,B2) can never decrease Maxfit(S), so newM > M always. In fact, newM(t+1) >
M(t+1) + MDL(p,t).

• In the example of Table 2, the package p is kept fixed and its MDL values are computed at
different instants. However, at step 4 of the algorithm, before bidding on Y3, the bidder might
want to know the value of MDL(Y3). In Table 3, for illustration, we determine the MDL(q,t)
and MDL(q,t+1) values of the package q on which the bid is placed at instant t. S is kept
unchanged at X9Y9, but q and S\q change with time. It is found that MDL(q,t) < MDL(q,t+1),
but the difference MDL(q,t+1) - MDL(q,t) is sometimes large and sometimes small.

(p,B) (pk,B1(k)) (qk,B2)

6

• While Compute_MDL() runs fast on the examples we have tried, in the worst case the
running time is exponential in the number of bids. One way to speed it up would be to try and
develop an incremental version that would determine, given a package p, the value of
MDL(p,t+1) from the value of MDL(p,t) with a minimum of computation.

S = X9Y9 p = X3Y3 S\p = X6Y6

Instant

Package

Bid
Maxfit

MWL(p) r and B1 s and B2 newM MDL(p)
S S\p

4 Y3 85 255 205 50 X5Y5 = (1) + (3) + (4) =
205 XY = 70 305 50

5 X4Y3 125 330 210 120 Y5 = (2) + (4) = 135 X6Y = 120 405 75
6 X2Y4 130 350 225 125 Y5 = (2) + (4) = 135 X6Y = 135 430 80
7 XY 55 360 260 100 X4Y =(1) + (7) =100 X2Y5 = 175 445 85
8 X2 30 370 265 105 X6Y =(1) + (7) + (8) =130 Y5 = 145 465 95
9 X2Y 85 400 275 125 X3Y5 =(4) + (7) + (9)=225 X3Y = 70 505 105

10 XY2 100 450 320 130 X6Y2 =(1) + (7) + (9) =185 Y4 = 135 580 130

Table 2: Values of MDL(p) in Example 2

Instant t Package q Bid MDL(q)
Before bid After bid

4 Y3 85 0 0
5 X4Y3 125 50 95
6 X2Y4 130 75 130
7 XY 55 0 10
8 X2 30 0 0
9 X2Y 85 20 30
10 XY2 100 25 50

Table 3: MDL(q) in Example 2

3.2 THEORETICAL RESULTS

Before we present any theoretical results related to Compute_MDL, we establish a more
basic claim, namely that in any CA, if package q is a subset of package r then MDL(q,t) <
MDL(r,t) at every instant t. This proof does not depend on the computation procedure described
above but it makes use of a similar construction and argument. Claims 3 and 4 taken together
imply that MDL(p,t) is in a certain sense well-behaved, since it is non-decreasing with time and
subsets of a package p have MDL values no larger than that of p.

Claim 4: Let q and r be packages where q is a subset of r. Then MDL(q,t) < MDL(r,t) at every
time instant t.
Proof: Suppose MDL(q,t) = A and MDL(r,t) = B. We want to show that A < B. We divide S into
three regions, where the first region holds package r exactly, the second r1 consists of a subset of
the packages on which bids have been placed at instants < t, and the third r2 equals (S\r)\r1. The
upper portion of Figure 3 shows the packages and the corresponding bids. Here, B1 is the sum of

7

the bid values on the packages that constitute r1. We choose the value of B2 in such a way that B
+ B1 + B2 = Maxfit(S,t); this cannot occur for a smaller value since MDL(r,t) = B. Some of the
packages on which bids have been placed in the auction so far have gone into the second region.
Of the remaining ones, some will fit into p, but the total of their bid values cannot exceed B.

(r,B) (r1,B1) (r2,B2)

(q,B) (q1,B1) (q2,B2)
Figure 3: Proof of Claim 4

To show that A < B, we now divide S into three parts, where the first part holds package q
exactly, the second part q1 equals r1, and the third part q2 = (S\q)\q1 as shown in the lower portion
of Figure 3. The bids are the same as in the upper portion. Here too B + B1 + B2 = Maxfit(S,t). No
difficulties arise since q is a subset of r, and it follows that A = MDL(q,t) < B. This argument is
valid only when q is a subset of r. □

At two instants t1 and t2, where t1 < t2, let the package q be q1 and q2 respectively. Suppose q1
is a subset of q2. Then by Claims 3 and 4 we must have MDL(q1, t1) < MDL(q2, t2). It can be
verified that Table 3 satisfies this condition.

We now show that Compute_MDL does indeed determine MDL(p,t) exactly. We recall that
MDL(p,t) = B if there is a bid (p,B) at instant t+1 for which there is a sequence of bids that
ensures (p,B) is in the winning combination at a future instant. We first establish that if this is the
case then for an appropriate choice of a hypothetical bid, p will be in the provisional winning
combination at instant t+2.

Claim 5: Suppose b(q1,k1), b(q2,k2), b(q3,k3), …, b(ql,kl) is the hypothetical sequence of bids at
instants k1, k2,…, kl needed to ensure that (p, MDL(p,t)) is in the winning sequence at some
instant > kl. Here the kj’s are > t+1 and in increasing order. Then a bid (p,MDL(p,t)) at instant t+1
followed by a bid on package (q1 + q2 + … + ql) of value (b(q1,k1) + b(q2,k2) +…+ b(ql,kl)) at
instant t+2 ensures that (p, MDL(p,t)) is in the winning combination at instant t+2.
Proof: Immediate. □

Claim 6: The procedure Compute_MDL yields the correct value of MDL(p,t).
Proof: Suppose MDL(p,t) = B. Then by Claim 5, at instant t+2 there must exist packages (p,B),
(r,B1), (s,B2) as in Figure 3 such that p + r + s = S and B + B1 + B2 = M = Maxfit(S,t). Here r
consists of packages from Δt, i.e., r is composed of packages on which bids have been placed at
instants < t, B1 is the sum of the corresponding bid values, and s = (S\p)\r. By definition, B must
be the smallest bid value on p for which the above conditions are true. There are many possible
choices for r. Compute_MDL takes each such (r,B1) pair and determines appropriate pairs (p,B)
and (s,B2). Since Maxfit(S,t) has already been determined, given B1 we know the value of B + B2,
but B and B2 are not individually known to us. To overcome this problem, we place a
hypothetical bid (s, M - B1) at instant t+1 and compute Maxfit(S) afresh to get newM, which must
be > M since an additional bid has been placed. We now work backwards. The quantity (newM –
M) is subtracted from M - B1 to give us B2, and a new bid (p,B) is now placed, where B = newM
– M. The algorithm varies r and gets the minimum value of B; the construction ensures that there
cannot exist any combination of packages in Δt\r with values that add up to a quantity > B. □

4. CONCLUSION

In some areas of business activity, such as in the procurement and sale of goods and materials,

8

online multi-unit CAs can find useful application. But such auction schemes still have no
convenient implementations, partly because satisfactory solutions to some problems faced by
bidders have been unavailable. The number of possible packages is large, making it hard for
bidders to form good estimates of package valuations. In the single-unit case, two package
parameters, the deadness level DL and the winning level WL, can be computed by the seller and
communicated to bidders, and these help to guide bidders in placing the next bid. How can we
extend the ideas to the multi-unit case, in which more than one copy of a package can be active
simultaneously? The winning level MWL of a package can be determined as before, but not its
deadness level MDL. Here we propose an exact method for computing MDL values to help
bidders to avoid placing inactive (i.e., dead) bids that play no role in the formation of winning
combinations. It remains to develop a more efficient, and if possible, an incremental, algorithm
for computing MDL values. It also remains to extend the notion of deadness level to more
generalized versions of Combinatorial Auctions (see Fionda and Greco, 2013),

REFERENCES

[Adomavicius and Gupta, 2005] Adomavicius, G. and Gupta, A. (2005), Toward Comprehensive
Real-Time Bidder Support in Iterative Combinatorial Auctions, Information Systems
Research, 16(2): 169-185.

[Brunner et al., 2010] Brunner, C., Goeree, J., Holt, C. and Ledyard, J. (2010), An Experimental
Test of Flexible Combinatorial Spectrum Auction Formats, American Economic Journal:
Microeconomics, 2(1): 39–57.

[Cramton et al., 2006] Cramton, P., Shoham, Y. and Steinberg, R. (Eds) (2006), Combinatorial
Auctions, The MIT Press, Cambridge, MA, USA.

[Fionda and Greco, 2013] Fionda, V. and Greco, G. (2013), The complexity of mixed multi-unit
combinatorial auctions: Tractability under structural and qualitative restrictions, Artificial
Intelligence 196, 2013, pp. 1-25.

[Kagel et al., 2010] Kagel, J., Lien, Y. and Milgrom, P. (2010), Ascending Prices and Package
Bidding: A Theoretical and Experimental Analysis, American Economic Journal: Micro-
economics, 2: 160–185.

[Parkes, 2006] Parkes David C., Iterative Combinatorial Auctions, Chapter 2 in [Cramton et al.,
2006].

[Sandholm, 2002] Sandholm, T., Algorithms for Optimal Winner Determination in
Combinatorial Auctions, Artificial Intelligence 135, 2002, 1-54.

[Sandholm, 2006] Sandholm, T., Optimal Winner Determination Algorithms. Chapter 14 in
[Cramton et al., 2006]

	(p,B)
	(pk,B1(k))
	(qk,B2)
	Figure 2: Partition of S into Three Parts
	// The function Compute_MDL computes MDL(p,t) from the set of bids Δt = { b(qk,k), 1 < k < t }
	REFERENCES

