

Indian	Institute	of	Management	Calcutta	

Working Paper Series

WPS No. 769

October 2015

An Experimentation with Simulating Mobile IPv6 (MIPv6) in NS-3 to handle

User Mobility

Manoj Kumar Rana
School of Mobile Computing and Communication, Jadavpur University, Kolkata, India.

Swarup Mandal
Information Technology and Services, Wipro Limited, Kolkata, India

Bhaskar Sardar
Dept. of Information Technology, Jadavpur University, Kolkata, India

&

Debashis Saha
Professor, IIM Calcutta, Diamond Harbour Road, Joka P.O., Kolkata 700 104 India

http://facultylive.iimcal.ac.in/workingpapers
	

An	Experimentation	with	Simulating	Mobile	IPv6	(MIPv6)	in	NS‐3	to	
Handle	User	Mobility

	
	

Manoj	Kumar	Rana1,	Swarup	Mandal2,	Bhaskar	Sardar3	and	Debashis	Saha4	

1School of Mobile Computing and Communication, 3Dept. of Information Technology
Jadavpur University,Kolkata, India

1manoj24.rana@gmail.com, 3bhaskargit@yahoo.co.in
2Information Technology and Services, Wipro Limited, Kolkata, India

swarup.mandal@wipro.com
4MIS Group, Indian Institute of Management (IIM)Calcutta,Kolkata, India

ds@iimcal.ac.in

ABSTRACT

Mobility management is becoming an important issue day by day due to the immense proliferation of wireless access networks globally.

The IETF has standardized Mobile IPv6 (MIPv6) to handle user mobility in IP-based mobile data networks. Worldwide the researchers are

putting in a lot of effort to render the mobility management as seamless as possible in order to enhance user experience. These researchers

need a simulation environment to test their novel ideas before taking it to the proof-of-concept level. Although ns-2 simulator supports

MIPv6, unfortunately its successor, the ns-3 simulator, does not support MIPv6 conforming to the IETF specification. This has created a

huge void in the simulation based testing of the innovative ideas put forth by network researchers. To overcome this shortfall, we present

an implementation approach of MIPv6 for ns-3 and subsequently carry out its performance evaluation. We provide detailed description of

the implemented MIPv6 module and also preliminary results by executing the MIPv6 module in ns-3.

General Terms
Mobility management, IPv6, Mobile data, User experience, Performance, Design.

Keywords
Network simulator, ns-3, Mobile IPv6, IP Mobility Management, Handoff Management, Simulation.

1. INTRODUCTION

Recently, we have witnessed an explosive growth in IP enabled mobile devices such as Smartphones, tablets etc.

Consequently, the Internet Engineering Task Force (IETF) has standardized several IP mobility management protocols to

gracefully handle the mobility of such devices in the next generation all-IP mobile networks. Starting with the basic Mobile

IPv6 (MIPv6), more advanced protocols such as fast handover for MIPv6 (F-MIPv6) and hierarchical MIPv6 (HMIPv6) have

also been released by the IETF MIPSHOP working group. Although these new protocols differ from MIPv6 to some extent

with respect to their functionality, they maintain the same basic MIPv6 protocol stack intact. Therefore, simulation study of

next generation all-IP mobile networks (e.g., 4G/5G) demands the basic MIPv6 implementation in the first place. Hence, the

current network simulators must have MIPv6 module in built to draw the attention of the mobility research community.

In the last few decades, network simulator ns-2 was heavily used by the mobility research community to conduct various

experiments on simulated mobile networks. The recent research works also heavily depend on the advanced version of ns-2,

namely ns-3. It has better alignment with real systems and also supports advanced features. However, even today, ns-3 does

not contain built-in MIPv6 package in its main tree. Although many Linux native stack based MIPv6 implementations are

available, they require users to modify the Linux native stack to make changes in MIPv6 implementation. For a naïve ns-3

user, it is quite cumbersome to change Linux stack, in effect preventing the researchers to use ns-3 widely.

So, we have implemented MIPv6 using the basic ns-3 stack only. In this paper, we present the progress of our work on the

implementation of MIPv6 and its validation. Our implementation would help an ordinary user of ns-3 to easily and/or modify

MIPv6 code for implementing advanced versions of mobility management schemes.

Rest of the paper is organized as follows. We have briefly discussed recent research efforts on the simulation and emulation

of MIPv6 in Section 2. In Section 3, we have described the structure of basic ns-3 which is required to implement new

modules in ns-3. The main components of our implementation are discussed in Section 4. Preliminary simulation results are

given in Section 5. Finally, Section 6 concludes this paper and sketches some potential future works.

2. Related Works

The available MIPv6 implementations can be broadly classified as Linux test bed implementation and simulation

implementation. The Lancaster University developed the first Linux based MIPv6 implementation for kernel 2.1.90 [1].

Then, Helsinki University of Technology came up with an implementation of MIPv6 for kernel 2.4.22 as a part of MIPL

project [2]. However, they followed an initial version of MIPv6 draft, which is now outdated. Then, many Linux based

MIPv6 implementations have been released in the recent past such as CNI-MIPv6 [3] test bed and UMIP [4].

The simulation based implementations are mainly based on OMNET++, OPNET and ns-2/3. The extensible MIPv6

(xMIPv6) [5] implementation is the most eminent implementation in OMNET++. Some other OMNET++ based MIPv6

simulations can be found in [6] and [7]. On the other hand, OPNET based MIPv6 simulation model have been developed in

the institute of informatics of Goettingen University by Le et. al. in 2005. Presently the most common and well known

network simulator is ns-2/3. The implementation of MIPv6 in ns-2 is well known and widely used by the research

community. A possible implementation of IPv6 and MIPv6 in ns-3 can be found in [8]. In [9], H. Y. Choi et. al. has described

an implementation of proxy mobile IPv6 (PMIPv6) in ns-3. To some extent, we follow the design approach presented in [9].

But MIPv6 and PMIPv6 are functionally different and so our design approach is quiet different compared to them.

3. Overview of ns-3

The discrete event network simulator ns-3 is composed of two basic parts: ns-3 core and the network protocol modules.

These ns-3 components can be found in the source code directory ns-3-dev/src/. We have briefly discussed a few of them to

enhance the understandability of our MIPv6 implementation.

The network protocols module includes implementation of IPv4, IPv6, TCP, UDP, ICMP, ARP, etc. The InternetStackHelper

helps an user to install these protocols in a node. The most important functions of the Internet module are: the Receive() and

LocalDeliver() methods of the Ipv6L3Protocol class, Assign() method of the Ipv6AddressHelper class, DoDAD() method of

Icmpv6L4Protocol class and Receive() method of Ipv6L4Protocol class. When L2 connection is established, the Assign()

function assigns IPv6 address to the node. The address assignment follow mandatory duplicate address detection (DAD)

mechanism. The DAD process is handled by the DoDAD() function. In the network layer, a received packet is processed by

two Receive() functions. The first Receive() function, a part of Ipv6L3Protocol class, checks whether it is a data packet (it can

handle control or signaling packet in its own) and calls the second Receive() function, a part of Ipv6L4Protocol class, which

actually checks the header and forwards it to the correct application running in the upper layer.

Although ns-3 core module contains many models, we briefly describe two models, namely, Packet and NetDevice models.

A Packet is simply an instance of a buffer class. Its members are packet tag, byte tag, and metadata. The byte tags are used to

tag a portion of the bytes inside the packet while the packet tags are used to tag the whole packet, and the description of the

headers and trailers of the packet buffer is given by the metadata. The Header base class can be used to implement various

types of headers which are used to implement pure virtual functions such as GetSerializedSize(), Serialize(), DeSerialize()

and Print(). The NetDevice is an API used by the IP and ARP protocols to send packet through the MAC layer. One can

inherit this base class to add new functionality in it. The most important function of this class is Send() function that sends a

packet from layer 3 to a particular Network Device based on the decision of IPv6 routing protocol.

4. Implementation of MIPv6 in NS-3

We have used existing classes of ns-3 as well as defined new classes (non-derived) for implementing MIPv6 in ns-3. Figure 1

show these classes. The association between a group of classes (e.g., Ipv6L3Protocol class and Ipv6MobL4Protocol and

Ipv6TunL4Protocol) indicates an event driven triggering mechanism. We inherit the Header base class to define MIPv6

specific classes. We extend these classes further to support BU processing and data packet processing.

The MIPv6MN class implements BU process by using a callback mechanism. When the newly configured IPv6 address

reaches “PREFERRED” state, the BU process is triggered. The m_NewIpCallback function of MIPv6MN class is used to

receive a trigger from Icmpv6L4Protocol when the DAD process completes. The BU message is forwarded to the NetDevice

object of the HA/CN. Then the MIPv6MobL4Protocol of the HA/CN sets up the tunnel towards MN. Similarly MIPv6MN

sets up the tunnel after receiving BA. We have defined new functions to send and receive mobility related signaling messages

such as SendMessage() and Receive(). The Receive() function uses new handler functions BAHandle(), HoTHandle() and

CoTHandle() to process received signaling messages. The BList object MIPv6MN class is updated with the information such

as home agent address, lifetime, BU state, CoA, HoA etc. In the similar way the MIPv6CN/HA classes handle the mobility

messages and update the BCache object. All mobility messages are demultiplexed by the MIPv6Demux class and forwarded

to the proper handler class of the MIPv6MN/CN/HA classes.

The Ipv6MobL4Protocol and Ipv6TunL4Protocol classes use same Receive() function to handle mobility messages and data

packets respectively. The Receive() function of Ipv6MobL4Protocol class forwards the mobility message to the

corresponding Receive() function of the MIPv6MN/CN/HA class while the Receive() function of Ipv6TunL4Protocol class

receives data packets from the Ipv6L3Protocol class.

We have defined a new class, TunNetDevice, by inheriting NetDevice class to enable IP-in-IP encapsulation de-capsulation of

packets and transmission over physical interface of a node. The helper classes MNHelper, HAHelper and CNHelper classes

define overloaded install() method to allow the users to install MIPv6 in a node.

To process data packet for MN to HA direction Ipv6SourceRouting class is used to determine the outgoing tunnel net device

and encapsulate the packet. This encapsulated packet is then passed to Ipv6L3Protocol. The HA uses Ipv6TunL4Protocol

class to de-capsulate the packet and sends it to the CN. In the similar way, the packets from the HA are routed to the MN’s

CoA. To implement route optimization, we use m_NewRouteCallback method of Ipv6L3Protocol class which changes the

destination address to MN’s CoA.

Figure 1. MIPv6 Classes

5. Simulation Results

This section reports preliminary results to verify the correctness of our implementation. Figure 2 shows the simulation

environment. For the wired links, we have used data rate and link delay of 100 Mbps, 20 milliseconds respectively. For the

wireless links, we have used date rate and link delay of 11 Mbps, 10 milliseconds respectively. The CN and the MN runs an

echo client server application based on UDP. The PCAP trace file is used to measure the handover performance of MIPv6.

Figure 3 and 4, shows the handover packet trace at the MN. The MN sends the last packet to the CN through AR1 at

t=30.181347 second. The MN receives RA from AR2 at t=30.221232 second and starts address configuration process. At

t=31.350586 second, the MN sends a BU to its HA and receives corresponding BA at t=31.592070 second. Then the MN

starts receiving packets through AR2 t=31.794587 second. Then the MN sends HoTI and CoTI packets at t=31.592070

second and t=31.712474 second respectively. The MN receives HoT and CoT packets at t=31.712474 second and

t=31.836580 second respectively as shown in Figure 3 and Figure 4. The MN sends BU to the CN at t=31.836580 second,

and receives corresponding BA at t=31.957026 second, as shown in Figure 4. We define the handover delay with the HA as

the time difference between the receipt of the last packet from AR1 and receipt of first packet from AR2. Hence, the handoff

delay is 1.61324 second. Also we define the handoff delay with the CN as the time difference between the last packet from

AR1 and the reception of the BA from CN. From the PCAP traces, we observe that the handover delay (with HA and CN) is

1.75679 second.

Figure 2. Simulation Topology

9001:db80::200:ff:fe00:e/64 c001:db80::200:ff:fe00:14/64

9999:56ac:: 64 aaaa:56ac:: 64

HoA: 1234:db80::200:ff:fe00:1b

CN

HA

MN

AR1 AR2 AR3 AR4 AR5 AR6

Figure 3. IPv6 Packet Trace at MN from the Reception of the Last UDP Packet to Sending of the CoTI Message

Figure 4. IPv6 Packet Trace at MN from the Reception of the CoT Message to Sending of the BU Message to CN

6. Conclusion and Future Work

In this paper, we have provided an implementation of MIPv6 in ns-3 network simulator. We have implemented MIPv6 with

utmost care and close conformance and strict adherence to IETF standards. Our preliminary result proves the correctness of

our implementation in terms of handover delay.

Our implementation of MIPv6 module may be extended easily for implementing new protocols like FMIPv6, HMIPv6 in ns-

3 in near future. However, implementation of dynamic HA address discovery, dual stack MIPv6 support, and HA

multicasting membership control are planned for future.

REFERENCES

[1] http://www.cs-ipv6.lancs.ac.uk/MobileIP/

[2] Tuominen, A., J., and Petander, H. 2001. MIPL Mobile IPv6 for Linux in HUT Campus Network MediaPoli.

Proceedings of Ottawa Linux Symposium 01 (July, 2001). DOI= https://www.kernel.org/doc/ols/2001/mipl.pdf

[3] Yousaf, F., Z., Bauer, C., and Wietfeld, C. 2008. An accurate and extensible mobile IPv6 (xMIPV6) simulation model

for OMNeT++. http://www.kn.e-technik.tu-dortmund.de/en/forschung/ausstattung/xmipv6.html

[4] Aramoto, M., Nakamura, M., Sugimoto, S. and Takamiya, N. 2008. UMIP: USAGI-patched Mobile IPv6 for Linux.

http://umip.linux-ipv6.org/

[5] Yousaf, F., Z., Bauer, C. and Wietfeld, C. 2008. An accurate and extensible mobile IPv6 (xMIPV6) simulation model

for OMNeT++, Proc.Simutools '08, Article No. 88.

[6] Carmona-Murillo, J., and Gonzalez-Sanchez, J.-L. 2008. Handover Performance Analysis in Mobile IPv6: A

Contribution to Fast Detection Movement, Proc. Int’l Conf Wireless Information and Systems.

[7] Zhang, Y., and Bi, H. 2012. The Simulation of Hierarchical Mobile IPv6 with Fast Handover using NS2. Procedia

Engineering, 2nd SREE Conference on Engineering Modelling and Simulation (CEMS 2012). 37, 214–217.

[8] Mauchle F., Frei S. and Rinkel A. 2010. Simulating Mobile IPv6 with ns-3, SIMUTools 2010, March 15–19,

Torremolinos, Malaga, Spain.

[9] Choi, H., -Y., Min, S., -G,. Y.-H. Han, Park, J. and Kim, H. 2010. Implementation and Evaluation of Proxy Mobile IPv6

in NS-3 Network Simulator. Proc. Ubiquitous Information Technologies and Applications (CUTE), 2010.

