
  P a g e  | 1 

 

Indian Institute of Management Calcutta 
Working Paper Series 

WPS No. 832 /August, 2019 
Subhasis Mishra* 

Operations Management Group, IIM Calcutta 
Email: subhasism@iimcal.ac.in 

*Corresponding Author 
 

Balram Avittathur 
Professor, Operations Management Group, IIM Calcutta 

Email: balram@iimcal.ac.in 
 

Megha Sharma  
Associate Professor, Operations Management Group, IIM Calcutta 

Email: megha@iimcal.ac.in 
 

Indian Institute of Management Calcutta 

Joka, D.H. Road 

Kolkata 700104 

URL: https://www.iimcal.ac.in/faculty/publications/working-
papers/archive/2019   

mailto:balram@iimcal.ac.in
mailto:megha@iimcal.ac.in


  P a g e  | 2 

Mid-term Electricity Demand Forecasting: A 
Parsimonious Model 

Subhasis Mishra1, Balram Avittathur2, Megha Sharma3  
 

ABSTRACT: 

This paper presents a year-ahead electricity demand forecasting model. We intend to predict 

hourly demand to be catered by the power grid. Year-ahead forecast of hourly demand is relevant 

in the present context of ever-increasing capacity of power plants based on renewable energy 

(RE). While RE are desirable owing to their marginal cost of production, they are intermittent, 

which in turn increases the complexity in production planning of NRE. Moreover, lack of an 

effective and economical mode of energy storage technology renders NRE irreplaceable in 

catering large baseload. The proposed model takes into consideration trend and seasonality due 

to hourly, daily, and time of the year effects on electricity demand. We test our model in four 

regions (Austria, Germany, France, and Arizona in the USA) with a significant share of RE. We 

compare the results of our proposed model with a set of benchmark models for these regions. 

Empirical results suggest that our model outperforms the benchmark models while predicting 

hourly demand a year in advance. This work aids in decision making on investments for capacity 

addition (or closure) for the year ahead by power-producing firms based on non-renewable 

energy sources. This work places itself on the setting of co-existence of RE and NRE firms and 

thus is a contribution to the extant literature. 
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Mid-term Electricity Demand Forecasting: A 
Parsimonious Model 

Introduction:  

Over the past decade, governments of most nations have realized the peril of increased levels of 

greenhouse gases (GHG), substantiated by consistently high levels of carbon dioxide (CO2) on a 

global scale (408 ppm as of 5th of February 2018 (Global Greenhouse Gas Reference Network, 

2018)) and corresponding changes to the weather/climate. One of the major actions that 

governments have sought is incentivizing power plants based on renewable energy sources (RE) 

like solar, wind, tidal, etc. in forms of subsidies or feed-in-tariff (FIT). Encouragement to RE is 

further augmented by falling prices of the installation, more prevalent for solar-based power 

plants, owing to the technological up-gradation. Moreover, RE firms benefit from a lower 

marginal cost of production when compared to NRE firms. As a result, the world has witnessed a 

surge in the number of power plants based on renewable energy. In 2016, RE constituted more 

than 66% of the installed (additional) power capacity (Vaughan, 2017). An increase in the 

number of RE has, on an average, led to lowering of wholesale prices owing to the merit order 

effect (Sensfuß, Ragwitz, & Genoese, 2008), which in turn have reduced the revenue of NRE 

firms. The uncertainty of production, owing to incoming RE, could also lead to instances of 

supply overshooting demand, which could, in turn, deem the wholesale prices negative. A case in 

point being the negative wholesale prices in California on 11th March 2017 owing to the excess 

production from solar-based RE (Monthly Electric Utility Sales and Revenue Report with State 

Distributions , 2017). Power plants based on non-renewable sources of energy, unlike RE based 

plants, are steady and reliable. These plants are, however, declining with many coal-based pants 

being rendered non-operational due to financial losses especially in countries like India, China, 

Germany, etc. where there has been an influx of RE based power plants in a big way. For 

instance, as per a report by the Central Electricity Authority in India, the thermal power plant’s 

utilization in India may drop to 48% by 2022 (Sengupta, 2016). These losses are primarily a 

result of the entry of RE firms which have a lower marginal cost of production.  
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NRE firms are at wane but have not yet become obsolete as they are more reliable. Of 

late, there have been instances of the government of nations like USA championing the cause of 

NRE (Grunwald, 2017), though it would not be enough given the global apprehension about the 

global warming effects. On a global level, there has been a larger entry of firms into RE even 

though there has been evidence of not all RE firms doing well (Livsey, 2017). Thus, to stay in 

the competition, it becomes pertinent for NREs to forecast demand that they can cater to, 

accurately to ensure profitable bidding in the day-ahead energy market. Accurate mid-term 

forecasting would additionally also enable them to make a sound decision on their capacity. 

Thus, mid-term forecasting has assumed greater significance in the context of an increasing share 

of renewable energy in the overall electricity supply. While welcome as a cleaner source of 

energy, renewable energy contributes to greater challenges to demand-supply matching in a grid 

owing to its supply being intermittent. Studies indicate an increase in volatility in the grid, owing 

to a higher share of renewable energy and its detrimental impact on the performance of 

conventional NREs. Although there are many existing forecasting models, most of them are 

specific to a given dataset and restrict themselves for short-term forecasting to cater to day-ahead 

market bidding. Not many articles look into forecasting as a tool to enable management to take 

an informed decision on the investments in light of the changing landscape (Hahn, Meyer-

Nieberg, & Pickl, 2009). Moreover, most of the existing articles do not take into account 

variability in demand for NRE owing to the intermittent nature of the RE supply. 

In this paper, we endeavor to arrive at a better forecasting model which could forecast 

hourly demand a year-in-advance with better accuracy than existing models. We forecast 

demand which is characterized by a trend, multiple levels of seasonalities (intra-day, intra-week 

and intra-year seasonalities being the significant ones) and stochastic randomness. As mentioned 

before, most of the models developed so far are specific to a particular region and are STLF. 

Moreover, these models seldom contribute to making strategic decisions on investments and 

generation planning. We intend to bridge this gap by developing a model which would provide a 

reasonable fit irrespective of the location. Results obtained suggest that the proposed model 

forecasts demand with reasonable accuracy in spite of it being mid-term forecasting. Moreover, 

unlike most of the work reported in the literature, our model is based on univariate time series 

and does not include weather or/and economic factor data and still performs better than the 

benchmark models. 
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The subsequent section presents an extensive, though not exhaustive, review of the work 

pursued by researchers so far. We have tried to cover most of the prevalent methodologies 

adopted in forecasting demand for electricity.  The third section explains the methodology 

adopted in this paper. Results and corresponding implications are explained in the fourth section. 

This is followed by the conclusion and future scope of research. 

Literature Review:  

This paper mainly focuses on forecasting hourly demand a year in advance, which is of 

immense importance for the power plants given the rise in investments in power plants based on 

renewable sources of energy (RE) with a negligible marginal cost of production. To the best of 

the author’s knowledge, this work has not been pursued before in the literature. Load forecasting 

can be classified based on lead time or the method used for forecasting or time-window for 

which the aggregate demand is forecasted, that is the granularity of the forecast.  

Lead time for forecasting can be defined as the length of time between making the 

demand forecast and realizing the actual demand. On the basis of lead time, load forecasting can 

be classified into short-term load forecasting (STLF), mid-term load forecasting (MTLF) and 

long-term load forecasting (LTLF) (Hahn, Meyer-Nieberg, & Pickl, 2009). STLF model predicts 

loads up to one week ahead, whereas the lead time of MTLF ranges from a week to a year 

(Kyriakides & Polycarpou, 2007). LTLF models generally forecast demand to be realized more 

than a year in the future. Usually, most of the articles on STLF, forecast demand an hour or a 

day- ahead. STLF models predominantly aid in operational decisions like the chalking out the 

scheduling of the generation system or deciding on the bidding amount, whereas MTLF aid the 

plants in short term planning such as designing contracts especially pertaining to the energy 

exchange (González-Romera, Jaramillo-Morán, & Carmona-Fernández(2006), (Hong & 

Fan(2016)). LTLF models, on the other hand, aid in taking strategic decisions like those 

pertaining to capacity addition and deletion, and so on.  Granularity in forecasting can be defined 

as the time window for which the aggregated demand is forecasted, for example,  for for a given 

minute, total demand in a given time frame of thirty minutes or an hour or a week or a month or 

a year and so on. Most of the load forecasting models so far try to cater to aggregate demand 

over a time frame that ranges from a quarter of an hour to a year. In this paper, we forecast 
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demand on an hourly basis. For the sake of convention, demand for the first hour refers to the 

total demand from 12:00 hours to 1:00 hour.  

Based on the methodology, forecasting models can be broadly classified into statistical 

methods or the parametric methods and methodologies based on artificial intelligence (Al-

Hamadi & Soliman, 2005). Another branch of methodology could be based on heuristic/meta-

heuristic methods. Statistical methods are those which are based on sound statistical foundations. 

Few examples of the same would be methodologies based on auto-regression (AR), auto-

regressive moving average (ARMA) models, auto-regressive integrated moving average 

(ARIMA) models, regression models, and so on. Methodologies based on machine learning 

techniques or those based on fuzzy logic come under the ambit of artificial intelligence. There is 

a substantial number of forecasting models in the literature which are based on evolutionary 

algorithms or meta-heuristics like the ant-colony optimization, genetic algorithm, etc.    

The literature on load forecasting over the years has been dominated by short-term load 

forecasting techniques wherein a day ahead (or a time-slot ahead) hourly demand is predicted to 

aid managers in their bids to be placed in the day-ahead market (or spot market). Over the years, 

various types of models have come to the fore for forecasting. One of the seminal paper on STLF 

was by Taylor J.  (2003). The author discusses the application of the ARIMA model and 

proposes a variant of the same for better accuracy. They take into account two levels of 

seasonality, namely intra-day and intra-week, by using a multiplicative seasonal ARIMA model 

in conjunction with Holt-Winter’s exponential smoothing formulation. Their work proves the 

merit of taking into consideration multiple levels of seasonalities vis-à-vis just one, since the 

forecasting errors (Mean Absolute Percentage Error being the metric) is significantly less.  

Taylor J.  (2010) further improve upon their earlier work by considering an additional level of 

seasonality, seasonality owing to intra-year effects, which improves the accuracy of the 

forecasting even further as compared to their earlier work. Hagan & Behr (1987) improve upon 

Box and Jenkins transfer function model (Box, Jenkins, & Reinsel, 1994) by non-linearizing the 

transfer function to aptly fit the non-linear relation between the load and temperature. Most of 

the applications of ARIMA and ARMA models mentioned above is on the premise of the 

availability of adequate data points. However, with the advent of neural nework based fuzzy 

logic, researchers have found a way around it. Barak & Sadegh (2016) develop a hybrid 
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forecasting model that can deal with data shortage. Their algorithm is based on ARIMA and 

adaptive neuro inference fuzzy system (ANFIS). Their methodology ensues a three-stage 

approach, wherein at the first stage ARIMA model is used to forecast the linear pattern in the 

data, residuals of which are fed into ANFIS for the second stage. In the third stage, they are 

combined to provide the final forecast. AdaBoost model is used in the second stage owing to 

lack of sufficient data points. This methodology could be useful for forecasting in developing 

countries where existing data and resources for data collection could be inadequate. Electricity 

demand is generally non-linear by nature and thus, accurate forecasting for the same calls for 

special treatment for this chaotic nature. Wang, Chi, Wu, & Lu (2011) cater to it by employing a 

two-step approach. First, they employ delay embedding theorem to account for the non-linear 

structure of the demand and then use weighted largest Lyapunov exponent forecasting method 

(WLLEF) to predict the chaotic nature of the demand. The weights for WLLEF are determined 

by Particle Swarm Optimization (PSO) algorithm. Their model inherently also takes into account 

the seasonality impact on the demand by decomposing the demand at a given time as a product 

of trend and seasonality for that time slot. Our methodology makes use of the same. Zhu, Wang, 

Zhao, & Wang (2011) use a combination of the combined model of Moving Average (to iron out 

seasonal effects and obtain a trend) and PSO (to take into account seasonality effects). Dudek 

(2016) pre-processes the data to develop patterns that mimic the daily load curves. Thus, they 

can eliminate the non-stationarity in the data. Then, the NN is trained to best fit the pattern, given 

the input data. Most of the papers that we discussed on STLF, forecast for a granularity which is 

similar to the lead time of their model, since as the name suggests they are ‘short term’! 

 Most of the MTLF and LTLF models forecast demand at an aggregate level, that is 

overall demand for the forecasting period. In comparison to STLF, application of LTLF and 

MTLF has been limited. However, most of the MTLF and LTLF models are multivariate and 

often do not take into consideration economic factors for demand forecasting. Kucukali & Baris 

(2010) used only one variable, namely Gross Domestic Product (GDP), to forecast yearly 

demand for Turkey. They proposed that GDP alone was enough to predict the demand for 

subsequent years. Akay & Atak (2007) use Grey Prediction with Rolling Mechanism (GPRM) to 

predict the yearly demand for the subsequent year. They find the results to be more robust and 

accurate, given the volatile nature of the demand. Most of the articles that we discussed so far in 

this section have a forecasting model that has the same lead time and granularity level. However, 
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though we came across very few articles, there exists another set of literature that forecast at 

shorter granularity levels than the lead time. Al-Hamadi & Soliman (2005) forecast the hourly 

load patterns for a typical week of a year, a year in advance. They make use of the strong 

correlation of daily load behavior with the yearly load behavior to forecast the demand. In 

addition to the correlation between the hourly load with weekly load, they also take into 

consideration the trend, that is the growth rate, of demand over the years. The approach proposed 

by them can be utilisd for mid-term or long-term lead times to predict at an hour granularity. 

Though granularity is at an hourly level, it is the average demand for a typical hour of a week. 

For instance, they forecast average demand in the first hour for the second week of the upcoming 

year and so on. Hong, Wilson, & Xie (2014) develop a comprehensive model to predict monthly 

peak demand and monthly demand a year in advance. Their model consists of a linear regression 

model that looks at the various correlation between the meterological parameters and the hourly 

demand patters, which in turn is augmented by the economic factors like the gross state product. 

The output from the regression model acts as an input to the probabilistic forecasting model, 

which looks at different scenarios with assigned probabilities. 

Thus, some articles on LTLF and MTLF try to foresee demand for the coming year or 

quarter or month on an aggregate level, that is demand on an average on a day of the month or 

the week of the month or the month of the year, so as to aid plants in their capacity related 

decision. Another stream of literature that predict demand on an hourly basis a year in advance 

do so by taking into consideration the error in the forecast that happened a time-period in 

advance. This paper uniquely places itself in the forecasting literature in two ways. Firstly, we 

predict demand for electricity using a univariate model and secondly, our LTLF model doesn’t 

use the error in forecasting a time period in advance. To the best of our knowledge, there aren’t 

any attempts to predict demand, at an hour granularity, a year-in advance. Such a forecast could 

help the management make informed investment decisions and plan their generation. A summary 

of the various types of forecasting model has been elucidated in Table 1. This paper tries to cater 

to the gap represented by the cell-shaded green.  
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Figure 1: Problem Definition 

Table 1: Summary of the classification of the forecasting model 

   Granularity 

   Half an 
Hour Hourly Hour of a Week Monthly Yearly 

Le
ad

 T
im

e 

STLF 

Half an 
Hour 

Taylor J. 
(2003)         

Day Taylor J. 
(2010) 

Hagan & 
Behr 

(1987) 
    

MTLF Month     Zhu, Wang, Zhao, 
& Wang (2011)    

LTLF Year     Al-Hamadi & 
Soliman (2005)  

Hong, Wilson, & 
Xie (2014)  

Akay & 
Atak 

(2007) 
 

Table 2: Literature Review Summary 

 

   

Forecasting 
for NRE

Demand 
Forecasting

Supply 
from RE
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 A summary of the literature discussed in the above paragraphs and a few more on 

forecasting of demand for electricity has been enlisted in table 2. Granularity in table 1 and table 

Author Granularity 

Prediction 

Lead 

Time 

Method Variables Evaluation 

Kucukali & 

Baris (2010) 
Yearly  Year Fuzzy Logic GDP MAPE(0.041) 

Akay & 

Atak (2007) 
Yearly  Year 

Grey Prediction with 

Rolling Mechanism  
Time MAPE(0.037) 

Wang, Chi, 

Wu, & Lu 

(2011) 

Half Hourly Day 

Weighted Lyapunov 

Exponent forecasting 

method + PSO 

Time MAPE(0.025) 

Zhu, Wang, 

Zhao, & 

Wang 

(2011)  

Monthly Month 
Hybrid 

(MA+Combined+PSO) 
Time MAPE(0.088) 

Azadeh, 

Ghaderi, & 

Sohrabkhani 

(2008) 

Monthly Month 
ANN/Time Series 

Simulation/DOE 
Time MAPE(0.018) 

Azadeh, 

Ghaderi, 

Tarverdian, 

& Saberi 

(2007) 

Monthly Month GA+ANN 

Price, 

number of 

customers, 

Time 

MAPE(0.037) 

Taylor 

(2010) 
Half Hourly Day 

ARMA, Holt-Winter’s 

Exponential Smoothing, 

Exponential Smoothing 

Time 

 

MAPE(0.016, 

0.016, 0.017)* 
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2 refers to the time window for which the demand has been aggregated, which in turn is 

forecasted whereas lead time refers to duration between the forecast made and realization of the 

demand. In this paper, our primary contribution is the extension of the multiplicative model (𝑌𝑌 =

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 × 𝑆𝑆𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) to include seasonality at three different levels, namely hour of the day, 

day of the week and week of the year. The proposed model has shown robustness for 

geographical location, unlike most of the models proposed so far in literature which function the 

best for the given region. We forecast, a year in advance, demand for each hour of a day of a 

year based on the past data, and hence, our model caters to mid-term forecasting unlike most of 

the literature discussed above. Moreover, we deviate from common perception for the need of 

multivariate forecasting models for non-short term forecasting as our methodology is univariate 

and predicts the demand with reasonable certainty and by making it univariate, we also eliminate 

the errors owing to the forecasting the weather for the upcoming year. 

Methodology:  

Figure 1 shows a typical time series for electricity demand. Point 1 in x-axis refers to a time 

window between 00:00 hours to 1:00 hours on 1st January 2006, point 2 refers to 1:00 hour to 

2:00 hours on 1st January 2006 and so on. The red line in the figure represents the trend line for 

method for triple 

seasonality 

Taylor J. 

(2003) 
Half Hourly 

Day and 

Half an 

hour 

Holt-Winter’s 

exponential smoothing 

funtion with 

multiplicative seasonal 

ARIMA model 

Time 

 
MAPE(0.012)* 

Hagan & 

Behr (1987) 
Hourly Day 

Non-liner variant of 

Box-Jenkins transfer 

function model 

Time, 

Temperature 

MAPE(0.0373, 

average value for 

MAPE of Summer, 

Fall Winter, Spring) 
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the demand, which captures the trend at which demand has grown over the years. A closer look 

at Figure 1  
De

m
an

d

Time series of Demand for Electricity (Aust

 

Figure 2: A typical time series of Electricity Demand 

shows that a typical time series for electricity demand can generally be broken into four 

components. We discuss the same in the following paragraphs. 

 Firstly, the demand follows a trend over the years, as can be seen in Figure 1. The red 

trend line in Figure 1 suggests that the demand has only been increasing over the years. 

However, the demand for a typical hour of a day of a year may not have been increasing at the 

same rate. One can attempt to look at each typical day separately and predict it for the upcoming 

year. Although, we may now possess the computational capabilities to pursue the method, it 

would become a tedious job and may prove to be a devil in disguise owing to two reasons. 

Firstly, we would need to look at 8760 (24 × 365) data points separately, which given the 

limited availability of dataset for certain regions could be cumbersome and leave us with only 

inadequate points for forecasting. Secondly, and most importantly, a typical day of a year, may 

not be the same for all years since they may fall on different days of the week. As would be 

discussed later, since we have seasonality indices pertaining to each hour of a day of a week of a 

month, we are essentially taking care of the effects for every type of a day. Thus, in a way, we 

are averaging out any seasonality effects that a typical hour of a day may bring into the picture 

and then extract the trend from the de-seasonalised data. Other three components of the time 
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series comprise of seasonality owing to the effect of time of the day, day of the week and week 

of the year. On any given day, demand would be mostly low at the dusk as compared to 

mornings when most of the people are working. Demand for a given hour on different days may 

be different; however, the correlation between demands at two different hours of a day would 

most likely remain the same over different days. This can be seen in Figure 2, which depicts 

demand in electricity for two consecutive days in Austria, wherein time stamp 1 refers to demand 

between 00:00 hours and 1:00 hour on 1st January 2016 and so on. As can be seen, the form of 

the graph for both the days is similar even though demand on the second day is higher than on 

the first.   

De
m

an
d

Hourly Demand for 2 days (Austria)

 

Figure 3: Intra-day Seasonality 
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Figure 4: Intra-week Seasonality 

 The second level of seasonality that we observed in the four datasets is the seasonality 

owing to the day of the week. For instance, weekends would have a lower demand for electricity 

than on the weekdays. Figure 3 elucidates the same. The x-axis refers to an hour (in 

chronological order) of a day of a week of the year. The graph represents two consecutive weeks 

of the year 2006, wherein a value 1 against day refers to Sunday, 2 to Monday and so on. As can 

be seen in Figure 2, the form of the graph remains the same for different days. Also, on closer 

inspection of Figure 2, one can see that the form of the graph is quite similar for the weeks. The 

third level of seasonality is concerning week of the year, which is more granular than the seasons 

in a year. Three levels of seasonality have also been discussed in the literature. Taylor J.  (2010) 

is the closest to the work that we envisage in this paper wherein they forecast real-time electricity 

demand. We, however, try to forecast demand a year in advance and use a different model which 

is simpler in execution. We then compare performance of our model with benchmark models in 

terms of MAPE. We consider hourly demand data for Arizona, Austria and France. Using data of 

five years, we predict the demand for the sixth year. 
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Figure 5: Intra-year Seasonality 

We use a multiplicative model to forecast the demand taking into consideration the 

aforementioned four components of the time series data for the respective region selected. We 

use a bottom-up approach to arrive at the respective seasonality indices and top-down approach 

to forecast the demand. We make use of Moving Average (MA) to de-seasonalise data at each 

step. 

 

Results: 

 Our various findings and evaluation of the model are based on Mean Absolute Percentage Error 

(MAPE) which defined as: 

𝑀𝑀𝐴𝐴𝐴𝐴𝐴𝐴 = �
|𝐴𝐴𝑡𝑡 − 𝐹𝐹𝑡𝑡|

𝐴𝐴𝑡𝑡
 

where, 𝐴𝐴𝑡𝑡 is the actual demand realized and 𝐹𝐹𝑡𝑡 is the demand predicted for the time period 𝑆𝑆. On 

the model defined we tried to compare the results for various combinations. The variants with 

corresponding MAPE are tabulated in Table 2. 
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                                       Table 2: Comparison of MAPE for Forecasting under different scenarios 

Variant (All 

Seasonalities 

included) 

MAPE (%) 

France Austria Arizona Ontario 

Trend of all years 7.07 7.10 7.30 5.50 

Trend of last year 5.81 4.40 5.40 5.44 

No trend 6.06 13.45 15.2 6.52 

 

We next compare our model with some of the benchmark models. The summary for the same is 

provided in Table 3. 

Table 3: Comparison of MAPE for different models including the benchmark model 

Model 

No. 
Model Description 

MAPE (%) 

France Austria Arizona 

1 
Proposed Model 

(Last year trend) 
5.81 4.4 5.4 

2 
No trickle down 

seasonality 
9.25 8.38 10.22 
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3 

Probabilistic model 

based on k-means 

clustering (k=20) 

13.25 13.47 15.23 

 

20

30

40

50

60

 

Conclusion:  

 Forecasting literature in operations management has been limited to contributions in terms of 

techniques. However, seldom these techniques have found utility in practice. This paper 

concerns the forecasting of hourly demand for electricity with a lead time of a year, as a tool 

relevant to practice. We propose (CMA) a multiplicative model wherein seasonality indices 

are evaluated by smoothing the data using moving average. Since, there has been no literature 

on MTLF for forecasting hourly demand, we extend two well-known STLF models, namely 

Holt-Winters (HW) and Holt-Winters-Taylor (HWT) exponential smoothing method for 

MTLF and use them as benchmarks. Most of the forecasting models in literature are devised 

for a particular geography and evaluated on the same. A model is considered robust when it 

performs consistently across different geographies and conditions. We thus, select six 
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European countries varying in demographic, geographic and economic factors to compare our 

model with the benchmark models and to also evaluate robustness. In comparison to the 

HWT method, the CMA method has no terms to initialize and entails lesser computational 

effort. We also find that our proposed model performs much better than the benchmark 

models and is more robust. Our model is of utmost importance to regulators or plant managers 

who need to take a decision on capacity addition or deletion. It is under this premise that it 

becomes necessary to take into account the impact of seasonal cycles on the accuracy of 

forecasts. Discounting impact of seasonality on demand could lead to overestimating or 

underestimating the need for the capacity addition. In such scenarios, data granularity matters 

and thus MTLF model proposed in this paper could aid the managers. The granularity in the 

MTLF has an impact in the investment decisions. Thus, it is imperative to pursue MTLF at a 

granular level especially in recent times wherein there has been an influx of intermittent 

energy sources in the electricity grid. Parsimony and computationally less intensity of the 

model proposed also enables the manager to take a decision on the go. Such models also 

benefit regulators in estimating time of use tariffs well in advance so as to influence consumer 

demand effectively and flatten the load curve. This is of immense importance in the current 

times wherein there has been an advent in the number of power plants based on renewable 

sources of energy like the sun or wind whose supply at the best is intermittent. 

 

In this paper we also discussed the need to take into consideration the sequence of de- 

seasonalisation. Another factor which also needs to be accounted for is the interaction 

between different seasonal cycles. Our model does not take into account special days 

separately. While it is pertinent to treat them seperately for STLF, it does not have a huge 

impact for MTLF. With the advent of artificial neural network and machine learning based 

heuristics all these have become redundant. However, a simple model like CMA with 
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appropriate consideration could perform better. Moreover, such models could be the ‘white’ 

box in the hand of decision makers to make informed decisions. Availability of hourly data 

now makes it possible to forecast hourly demand a year in advance. 

  

Bibliography 
Akay, D., & Atak, M. (2007). Grey prediction with rolling mechanism for electricity demand forecasting 

for Turkey. Energy, 32, 1670-1675. 

Al-Hamadi, H., & Soliman, S. (2005). Long-term/mid-term electric load forecasting based on short-term 
correlation and annual growth. Electric Power Systems Research, 74, 353-361. 

Azadeh, A., Ghaderi, S., & Sohrabkhani, S. (2008). A simulated-based neural network algorithm for 
forecasting electrical energy consumption in Iran. Energy Policy, 36, 2637-2644. 

Azadeh, A., Ghaderi, S., Tarverdian, S., & Saberi, M. (2007). Integration of artificial neural networks and 
genetic algorithm to predict electrical energy consumption. Applied Mathematics and 
Computation, 186, 1731-1741. 

Bacher, P., Madsen, H., & Nielsen, H. (2009). Online short-term solar power forecasting. Solar Energy, 
83, 1772-1783. 

Barak, S., & Sadegh, S. (2016). Forecasting energy consumption using ensemble ARIMA–ANFIS hybrid 
algorithm. Electrical Power and Energy Systems, 82, 92 - 104. 

Box, G., Jenkins, G., & Reinsel, G. (1994). Time Series Analysis Forecasting and Control, 3rd Edition. New 
Jersey: Prentice-Hall, Inc. 

Cao, J., & Lin, X. (2008). Study of hourly and daily solar irradiation forecast using diagonal recurrent 
wavelet neural networks. Energy Conversion and Management, 49, 1396-1406. 

Cao, S., & Cao, J. (2005). Forecast of solar irradiance using recurrent neural networks combined with 
wavelet analysis. Applied Thermal Engineering, 25, 161-172. 

Dudek, G. (2016). Neural networks for pattern-based short-term load forecasting: A comparative study. 
Neurocomputing, 205, 64-74. 

Global Greenhouse Gas Reference Network. (2018, February 8). Retrieved from Earth System Research 
Laboratory Global Monitoring Division: https://www.esrl.noaa.gov/gmd/ccgg/ 

González-Romera, E., Jaramillo-Morán, M., & Carmona-Fernández, D. (2006). Monthly Electric Energy 
Demand Forecasting based on trend extraction. IEEE Trnsactions on power systems, Vol. 21, No. 
4, 1946-1953. 



  P a g e  | 20 

Grunwald, M. (2017). Trump's Love Affair with Coal. Politico Magazine. 

Hagan, M., & Behr, S. (1987). The Time Series Approach To Short Term Load Forecasting. IEEE 
Transactions on Power Systems, Vol. PWRS-2, 3, 785-791. 

Hahn, H., Meyer-Nieberg, S., & Pickl, S. (2009). Electric load forecasting methods: Tools for decision 
making. European Journal of Operational Research, 199, 902-907. 

Hong, T., & Fan, S. (2016). Probabilistic electric load forecasting: A tutorial review. International Journal 
of Forecasting, 32, 914-938. 

Hong, T., Wilson, J., & Xie, J. (2014). Long Term Probabilistic Load Forecasting and Normalization With 
Hourly Information. IEEE Transactions on Smart Grid, Vol. 5, No. 1, 456-462. 

Kaur, A., Nonnenmacher, L., Pedro, H., & Coimbra, C. (2016). Benefits of solar forecasting for energy 
imbalance markets. Renewable Energy, 86, 819-830. 

Kucukali, S., & Baris, K. (2010). Turkey’s short-term gross annual electricity demand forecast by fuzzy 
logic approach. Energy Policy, 38, 2438-2445. 

Kyriakides, E., & Polycarpou, M. (2007). Short Term Electric Load Forecasting: A Tutorial. In: Chen, K., 
Wang, L. (Eds.), Trends in Neural Computation, Studies in Computational Intelligence, vol. 35. 
Springer. 

Livsey , A. (2017, September 13). Green is not always good for investors. Opinion the Short view. 
Financial Times. 

Martı´n, L., Zarzalejo, L., Polo, J., Navarro, A., Marchante, R., & Cony, M. (2010). Prediction of global 
solar irradiance based on time series analysis: Application to solar thermal power plants energy 
production planning. Solar Energy, 84, 1772-1781. 

Monthly Electric Utility Sales and Revenue Report with State Distributions . (2017). Rising solar 
generation in California coincides with negative wholesale electricity prices. U.S Energy 
Information Administration. 

Sengupta, D. (2016, December 20). Thermal power plants' capacity utilisation to drop to 48% by 2022. 
Kolkata, West Bengal, India. 

Sensfuß, F., Ragwitz, M., & Genoese, M. (2008). The merit-order effect: A detailed analysis of the price 
effect of renewable electricity generation on spot market prices in Germany. Energy Policy (36), 
3086-3094. 

Stacey, K. (2007). Reality dawns on India’s solar ambitions. New Delhi: Financial Times. 

Taylor, J. (2003). Short-term electricity demand forecasting using double seasonal exponential 
smoothing. Journal of the Operational Research Society, 54, 799-805. 



  P a g e  | 21 

Taylor, J. (2010). Triple seasonal methods for short-term electricity demand forecasting. European 
Journal of Operational Research, 204, 139-152. 

Vaughan, A. (2017, October 4). Time to shine: Solar power is fastest-growing source of new energy. The 
Guardian. 

Wang, J., Chi, D., Wu, J., & Lu, H.-y. (2011). Chaotic time series method combined with particle swarm 
optimization and trend adjustment for electricity demand forecasting. Expert Systems with 
Applications, 38, 8419-8429. 

(2017). World Energy Investment 2017. International Energy Agency. 

Zhu, S., Wang, J., Zhao, W., & Wang, J. (2011). A seasonal hybrid procedure for electricity demand 
forecasting in China. Applied Energy, 88, 3807-3815. 

 

 


	ABSTRACT:
	Keywords:
	Introduction:
	Literature Review:
	Methodology:
	Results:
	Conclusion:
	Bibliography

