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Characterization of maxmed mechanisms for multiple

objects

Ranojoy Basu*1 and Conan Mukherjee�2

1Indian Institute of Management Udaipur, Udaipur, India
2Economics group, Indian Institute of Management Calcutta, Kolkata, India

Abstract

This paper presents an extension of maxmed mechanisms introduced by Sprumont [23]

to the multiple homogeneous objects setting. To address the complexities of the multiple

object setting, we consider special families of mechanisms which contain a mechanism for

each possible number of available objects. We interpret these families as ex-ante sale

procedures which specify different mechanisms to allocate different quantities of objects.

We identify, and completely characterize the maxmed families which use the (extended)

maxmed mechanisms to allocate any number of available objects while using the same

non-negative reserve price. The maxmed families turn out to be the only families that are

Pareto optimal among well behaved families comprising mechanisms that satisfy a set of

desirable axioms including (the ones used by Sprumont [23]): anonymity, strategyproofness,

no-envy, feasibility and individual rationality.

JEL classification: C72; C78; D71; D63

Keywords: Maxmed mechanism, strategyproof mechanism, multiple object allocation

1 Introduction

Sprumont [23] studies the problem of identifying Pareto optimal mechanisms for the

single object allotment problem with money. He considers decision inefficient mechanisms

outside the class of VCG mechanisms, and attempts to identify the Pareto frontier of the

class of feasible strategyproof mechanism. To keep the analysis tractable, he focuses on

anonymous and non-envious strategyproof mechanisms, and introduces a new class of

“maxmed” mechanisms.1 He shows that these are the only Pareto optimal mechanisms

*ranojoy.basu@iimu.ac.in
�conanmukherjee@gmail.com
1Both anonymity and no-envy are well know fairness notions. The former requires mechanisms to

ignore agent identities while deciding allocations for a reported profile. The latter requires that for
every reported valuation, no agent strictly prefers the allocation bundle of another agent than her own
allocation.
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in the class of anonymous, non-envious, feasible, individually rational, and strategyproof

mechanisms. In the present paper, we extend his results to the multiple identical object

setting by providing an extension of the maxmed mechanism functional form to the

multiple object setting.

Allowing multiple objects complicates the analysis substantially as any one agent

getting an object no longer implies that every other agents gets no object. Furthermore,

with multiple objects, there is a proliferation of allocation choices available to the planner

at any reported valuation profile, because now she can choose to not allot all available

objects.2 Hence, to obtain a characterization on the lines of Sprumont [23] with multiple

objects, it becomes necessary to use a restriction on the behaviour of mechanisms as the

number of objects being allocated changes. To accommodate such a restriction, we study

the problem in terms of “families” of mechanisms which contain a specific mechanism

for each possible number of units k that may be available for allocation. Thus, in our

setting, a social planner must choose a family of mechanisms to execute the allocation

exercise prior to the realization of the actual number of objects to be allocated.3

This conceptualization of families of mechanisms allows us to motivate a regularity

condition, also used in Basu and Mukherjee [4], which requires that set of valuation pro-

files where no objects are allocated - to not shrink when the number of units available

for allocation increases.4 We analyze the class of regular families, which contain contin-

uous, anonymous, feasible, individually rational, strategyproof mechanisms that satisfy

non-bossiness in decision.5 In particular, we identify families F which are Pareto op-

timal among all families that comprise of anonymous, continuous, feasible, individually

rational, non-bossy in decision, non-envious, and strategyproof mechanisms. We show

that these Pareto optimal families are same as the ones that use maxmed mechanisms to

allocate different supplies of available objects while using the same non-negative reserve

price. We call these the ‘maxmed families’ of mechanisms, and thus, present a complete

characterization of the maxmed families.

Anonymity requires that the welfare obtained from bidding in a mechanism not de-

pend on agent identities. Non-bossiness in decision requires that no agent be able to

influence allotment decision of another agent without changing her own allotment deci-

sion.6 Feasibility requires that the mechanism not entail wastage (so that sum of transfers

2So if three objects are available, then she can choose to allocate any k ∈ {0, 1, 2, 3} objects.
3Such a setting is observed in many real life situations. For example, an auctioneer (government

ministry) decides the modalities of auctions - before the exact number of objects (tenders) available for
sale gets decided. Sometimes the same predetermined auction format gets used in multiple consecutive
years with different numbers of available objects. Note that our notion of families of mechanisms allows
a planner to plan use of different mechanisms for different quantities of available licenses or antiquities.

4To be exact, we require this set to remain unchanged.
5We use the same notion of continuity as in Basu and Mukherjee [4].
6Similar notions of non-bossiness have been used by Satterthwaite and Sonnenschein [21], Svens-

son [24], Goswami, Mitra and Sen [9] etc. This version has also been used by Basu and Mukherjee [4]
and Mishra and Quadir [14].
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is never positive); while individual rationality implies that agents are not penalized for

participating in the mechanism (so that utility obtained by bidding is never negative).

Continuity of a mechanism ensures that mechanism outcomes do not change arbitrarily

for small changes in bid values, and strategyproofness ensures truth telling is a weakly

dominant strategy for all agents in the ensuing message game.

2 Literature Review

As mentioned above, our work is an extension of Sprumont [23] to the multiple identical

object setting. Apart from Sprumont [23], our work also relates to the papers on optimal

strategyproof mechanisms to allocate multiple objects. Some such notable papers are

Apt, Conitzer, Guo and Markakis [1], Athanasiou [3], Guo and Conitzer [11], Guo and

Conitzer [12], Moulin [16], Moulin [17], Ohseto [20]. While these papers differ in terms of

the class of mechanisms considered and the optimality notion used, all of them assume

allotment decision efficiency and hence, limit their study to the class of VCG mechanisms

(Vickrey [27], Clarke [5], Groves [10]).

Some papers which consider the problem of welfare maximization while allowing for

deterministic mechanisms without allotment efficiency are: de Clippel, Naroditskiy and

Greenwald [6], Drexl and Kleiner [7], Shao and Zhu [22]. Drexl and Kleiner [7] focuses

on strategyproof, individually rational and feasible mechanisms in a two agent setting,

and uses a prior distribution to specify the expected aggregate utility maximizing mech-

anism. Shao and Zhu [22] obtains similar results as Drexl and Kleiner [7] without the

use of individual rationality, but with a more restrictive distribution of types. de Clippel,

Naroditskiy and Greenwald [6] considers a multiple homogeneous setting like ours, and

presents a feasible, anonymous, strategyproof, individually rational and decision ineffi-

cient mechanism that distributes at least eighty percent of the social welfare generated

as number of agents goes to infinity.

However, the papers that are closest to ours are Sprumont [23], and Athanasiou [3] -

both of which use the single object setting. Athanasiou [3] presents necessary conditions

that a strategyproof and anonymous mechanism must satisfy to be Pareto optimal among

the class of all such mechanisms.7 He identifies maxmed mechanisms as a class of Pareto

optimal mechanisms among all strategyproof and anonymous mechanisms when there are

two agents. In contrast, we consider a mulitple of object setting like de Clippel, Narodit-

skiy and Greenwald [6], and provide a complete characterization of the maxmed families

(that use maxmed mechanisms to allocate any possible quantity of available objects). We

show that these are the only Pareto optimal families among all regular families, which use

anonymous, continuous, feasible, individually rational, non-bossy, non-envious, and strat-

7Athanasiou [3] also shows that when coupled with individual rationality, these necessary conditions
become sufficient.
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egyproof mechanisms. Thus, our paper specifies the exact functional form of maxmed

mechanisms when extended to the multiple homogeneous object allocation setting.

3 Model

We consider a situation where m homogeneous indivisible objects are to be allotted to

agents in N = {1, 2, . . . , n} with unit demand with m < n. Each agent i ∈ N has an

independent private valuation vi ∈ R+. For any i ∈ N , a generic allocation of i is denoted

by (di, t) where di represents the object allotment decision taking values in {0, 1} with

di = 1 if and only if i gets an object, and t represents an amount of money. We assume

that agents have quasilinear preferences over object and money, that is, utility to i from

the allocation (di, t) is divi + t.

A mechanism is a tuple of functions (dm, τm) such that at any reported profile of

valuations v ∈ RN
+ , each agent i is allocated a monetary transfer τmi (v) ∈ R and a

decision dmi (v) ∈ {0, 1}. For any reported valuation profile v ∈ RN
+ , define Wm(v) :=

{i ∈ N |dmi (v) = 1} to be the set of agents that are allocated an object. Note that at

any reported profile of valuations v ∈ RN
+ , |Wm(v)| ≤ m, that is, all objects need not

get allocated at all reported profiles. Therefore, the utility to any agent i with a true

valuation of vi at any reported profile v′ ∈ RN
+ , from the mechanism (dm, τm) is given

by u((dmi (v
′), τmi (v′)); vi) = vid

m
i (v

′) + τmi (v′). For any m ≥ 2, let Am be the set of all

possible mechanisms to allocate m objects.

As mentioned earlier, in this paper, we focus on family of mechanisms that describe

procedures to allocate any number of homogeneous objects. Such a family is a list of

mechanisms specifying one mechanism for each possible quantity of homogeneous object

supply. Thus, a family of mechanisms represents an ex-ante sale procedure, that is chosen

and fixed prior to the realization of the number of objects to be available for allotment.8

Let Ā be the set of all such families of mechanisms, that is, Ā := Πm∈NAm. Also, let

F = {F 1, F 2, . . . } denote a generic family of mechanisms in Ā, with the interpretation

that the mechanism Fm is to be used to allot objects when the number of available objects

turns out to be m. In this paper, we focus on well behaved families of mechanisms which

satisfy some degree of monotonicity as defined below.

Definition 1. A family of mechanisms F ∈ Ā is said to be regular if for all m > m′ ∈ N,

{v ∈ RN
+ : no objects are allocated at v by Fm} = {v ∈ RN

+ : no objects are allocated at v by Fm′}.

8The implicit assumption here is that at any date, the number of potential buyers n will be greater
than the number of available objects m ≥ 2. We could easily avoid making this assumption by redefining
a family of mechanisms as F = (F 1, F 2, . . . , Fn−1). In that case, all results and arguments of our paper
would continue to hold with some notational modifications. We do not do so for the sake of notational
simplicity, and consistency with Basu and Mukherjee [4], on whose results we base ours.
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Let Ār denote the set of regular families of mechanisms.

Thus, a regular family of mechanisms displays a monotonicity property such that the set of

profiles where no objects are allocated does not expand as the number of available objects

increases. This restriction rules out peculiar ex-ante sale procedures where abundance of

objects leads to scarcity in allocations.

Finally, we use the following notations. Let ∀ {i, j} ⊆ N , ∀ v ∈ RN
+ , v−i :=

(v1, . . . , vi−1, vi+1, . . . , vn) and v−i−j := (v−i)−j
. Further, for all r = 1, 2 . . . , n, define

v(r) to be the rth ranked valuation in a non-increasing arrangement of coordinates of

any v ∈ RN
+ . In case of ties while arranging the coordinates in such manner, without

loss of generality, we use the tie-breaking rule 1 ≻ . . . ≻ n.9 Further, define for any

x ≥ 0, x̄t := (x, x, . . . , x) ∈ Rt
+ for all t = 1, 2, . . . , n. Therefore, x̄n = (x, x, . . . , x) ∈ Rn

+

and x̄n−1 = (x, x, . . . , x) ∈ Rn−1
+ . Finally, for any three real numbers x, y, z, define

med{x, y, z} to be the median of these three numbers.

3.1 Axioms and other definitions

We now present the formal definitions of the axioms - ethical, strategic and technical -

that we will use in this paper. We begin by first defining a technical axiom of continuity

below, which requires that: whenever the allocation decision of an agent i is not preserved

in limit, the transfer assigned to i at the limit profile is such that she is indifferent between

getting and not getting the object.

Definition 2. A mechanism (dm, τm) is said to be continuous if for any ζ ∈ {0, 1}, any
i ∈ N and any sequence of profiles {vk} that converges to ṽ, whenever di(v

k) = ζ for all

k,

di(ṽ) ̸= ζ =⇒ u((1, τi(ṽ; di = 1); ṽi) = u((0, τi(ṽ; di = 0); ṽi).

Let Am
c denote the set of continuous mechanisms to allot a supply of m objects, and

Āc := Πm∈NAm
c denote all possible families that comprise continuous mechanisms.

Note that the transfer functions of strategyproof mechanisms may depend on any val-

uation profile v, in an indirect manner through the allotment decision’s dependence on

v. For example, for Vickrey auction with or without reserve price, the transfer at any

profile depends not only on the profile but also on the allocation decision at that profile.

In fact, a Vickrey auction is a continuous mechanism because at all profiles where the top

bidders (at least two in number) bid the same value, everyone gets zero utility irrespective

of which bidders win the object.10

9For any i ̸= j, i ≻ j means that the tie is broken in favour of agent i. That is, for any v, if
v3 = v7 > vi for all i ̸= 3, 7 and 3 ≻ 7, then v(1) = v3.

10To see the kind of mechanisms ruled out by the restriction of continuity, consider a setting where
m = 2 and n = 3. Fix a mechanism such that at all bid profiles, it allocates both objects to the first
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In the second definition below, we state the extension of the class of maxmed mecha-

nisms, which were introduced by Sprumont [23] for a single object setting, to the present

multiple identical object setting.

Definition 3. Any mechanism (dm,r, τm,r)∈ Am is said to be a maxmed with reserve price

r ≥ 0 if for all i ∈ N and all v ∈ RN
+ ,

� vi < max{v−i(m), r} =⇒ dm,r
i (v) = 0

� vi > max{v−i(m), r} =⇒ dm,r
i (v) = 1

� τm,r
i (v) =

{
med

{
0, v−i(m)− r, mr

n−m

}
if dm,r

i (v) = 0

med
{
0, v−i(m)− r, mr

n−m

}
−max{v−i(m), r} if dm,r

i (v) = 1.

For any non-negative real number r, let FM,r be a family of mechanisms such that for any

m, Fm
M,r is a maxmed mechanism with reserve price r. Thus, FM,r represents an ex-ante

maxmed sale procedure with reserve price r. Let M := {FM,r}r≥0 be the set of all such

maxmed sales procedure.

Now, we define a popular strategic axiom in the independent private values setting,

strategyproofness, which eliminates any incentive to misreport valuation for each agent by

making it weakly dominant strategy to reveal her true valuation in the ensuing message

game.

Definition 4. Amechanism (dm, τm)∈ Am satisfies strategyproofness (SP) if for all i ∈ N ,

all vi, v
′
i ∈ R+, and all v−i ∈ RN\{i}

+ ,

u(dmi (vi, v−i), τ
m
i (vi, v−i); vi) ≥ u(dmi (v

′
i, v−i), τ

m
i (v′i, v−i); vi).

Next, we define the axiom of ‘non-bossiness in decision’ which requires (only) the deci-

sion rule in a mechanism to be well-behaved in the sense that no agent is able to influence

allotment decision of another agent without changing her own allotment decision.

Definition 5. A mechanism (dm, τm)∈ Am satisfies non-bossiness in decision (NBD) if

for all i ∈ N , all v ∈ RN
+ and all v′i ∈ R+,

dmi (v) = dmi (v
′
i, v−i) =⇒ dmj (v) = dmj (v

′
i, v−i),∀ j ̸= i.

and second highest bidder whenever either of their bids is greater than or equal to 20, or else no objects
are allocated. Further, any agent who is not allocated an object receives zero transfer, while any agent
who is allocated an object pays a price equal to: 20 if bids of all other agents are strictly less than 20, or
else the third highest bid. To see that this mechanism is discontinuous, consider a sequence of profiles
{(20 − 1

k , 6, 5)}k. Note that for all k, the agent 2 does not get an object, but she gets an object at the
limit profile (20, 6, 5). However, 2 is charged a price 5 at the limit, which makes her prefer getting the
object to not getting the object, that is, u2((1,−5); 6) > u2((0, 0); 6).
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As noted in Thomson [25], NBD represents a strategic hindrance to collusive practices

where agents form groups to misreport their valuations in a coordinated manner so that

object allotment decision of any one member changes to her benefit, while others’ remain

unchanged.

The following three axioms represent three different notions of fairness. The first of

these states the concept of anonymity which requires that utility derived from an alloca-

tion by any agent be independent of her identity.11 The second one presents the fairness

notion that each agent should have some opportunity to win an object, irrespective of

other agents’ reports.12 Finally, the third axiom states the notion of no-envy which

requires that every agent prefers her own allocation (of decision and transfer from the

mechanism) to that of any other agent.13

Definition 6. A mechanism (dm, τm)∈ Am satisfies anonymity in welfare (AN) if for all

i ∈ N , all v ∈ RN
+ and all bijections π : N 7→ N ,

u(di(v), τi(v); vi) = u(dπi(πv), τπi(πv); πvπi),

where πv :=
(
vπ−1(k)

)n
k=1

.

Definition 7. A mechanism (dm, τm)∈ Am satisfies agent sovereignty (AS) if for all i ∈ N

and all v ∈ RN
+ , there exists v′i ∈ R+ such that

dmi (v
′
i, v−i) = 1.

Definition 8. A mechanism (dm, τm)∈ Am satisfies no-envy (NE) if for all i ̸= j ∈ N ,

all v ∈ RN
+ ,

u(di(v), τi(v); vi) ≥ u(dj(v), τj(v); vi).

The next axiom of feasibility requires that the sum of transfers not exceed zero for

any profile of valuations and thus, ensures that implementing fair mechanisms do not

entail wastage of resources.

Definition 9. A mechanism (dm, τm) satisfies feasibility if for all v ∈ RN
+ ,∑

i∈N

τmi (v) ≤ 0.

11This notion has also been used by Ashlagi and Serizawa [2], Athanasiou [3], Hashimoto and
Saitoh [13], and Sprumont [23].

12Thus agent sovereignty requires that mechanisms be sufficiently sensitive to all agents’ valuations
so that each agent always has some opportunity to win a unit no matter what other agents’ bids are.
Moulin [15] states that this axiom is “reminiscent of the citizen sovereignty of classical social choice.”
As shown in Claim 1 later, it is implied by the other axioms used in our paper.

13This notion was introduced by Foley [8] and Varian [26].
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Finally, in the axiom below, we present the fairness notion that requires all agents to

get a non-negative utility at all possible profiles so that voluntary participation in the

mechanism can be ensured.

Definition 10. A mechanism (dm, τm) satisfies individual rationality (IR) if for all i ∈ N ,

all v ∈ RN
+ ,

u(dmi (v), τ
m
i (v); vi) ≥ 0.

4 Results

We begin by presenting a well known result which states that the decision rule associated

with a strategyproof mechanism must be non-decreasing in one’s own reported valua-

tion.14 More specifically, ∀ i and ∀ v−i, there exists a threshold number Tm
i (v−i) such

that: i wins an object if vi > Tm
i (v−i), and fails to win an object if vi < Tm

i (v−i).

Fact 1. Any mechanism (dm, τm) satisfies SP and AS, if and only if ∀ i ∈ N and ∀ v−i ∈
RN\{i}

+ , there exist functionals Km
i : RN\{i}

+ 7→ R and Tm
i : RN\{i}

+ 7→ R such that

dmi (v) =

{
1 if vi > Tm

i (v−i)

0 if vi < Tm
i (v−i)

and τmi (v) =

{
Km

i (v−i)− Tm
i (v−i) if dmi (v) = 1

Km
i (v−i) if dmi (v) = 0

Proof. This result follows from Proposition 9.27 in Nisan [19] and Lemma 1 in Mukher-

jee [18]. It is also shown as Fact 1 by Basu and Mukherjee [4].

Fact 1 allows for arbitrary tie breaking in strategyproof mechanisms for valuation

profiles v ∈ RN
+ with vi = Tm

i (v−i) for some i ∈ N . In this paper, we use the tie breaking

rule below:

For any profile v, define Xm(v) := {i ∈ N : vi > Tm
i (v−i)}, and Y m(v) :=

{i ∈ N : vi = Tm
i (v−i)}. At any profile v, if |Y m(v)| ≤ m − |Xm(v)| then

all agents in Y m(v) are allocated an object each, or else the top m− |Xm(v)|
agents in Y m(v) according to the order 1 ≻ 2 ≻ . . . ≻ n are allocated an object

each.15

Now, we present a result from Basu and Mukherjee [4]. This result states that any

regular family consisting of continuous mechanisms that satisfy AN, AS, NBD and SP;

must employ a reserve price r such that top m bidders bidding excess of r win an object

when m objects are available for allocation.

14This result can be found as Proposition 9.27 in Nisan [19] and Lemma 1 in Mukherjee [18].
15Note that irrespective of the tie breaking rule used to decide allocation decisions for any agent i;

she is indifferent between getting and not getting the object (as her utility is Km
i (v−i) in both cases).

All results in this paper would continue to hold with small notational modifications if a different simple
order (other that 1 ≻ . . . ≻ n) is used to break ties in the aforesaid manner.
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Fact 2. Fix any family F ∈ Āc ∩ Ār. For any m, if the mechanism Fm satisfies AN, AS,

NBD and SP, then there exists an r ≥ 0 such that for all i ∈ N and all v ∈ RN
+ ,

� Tm
i (v−i) = max{v−i(m), r} and

� Km
i (v−i) = Km(z) where Km : Rn−1

+ 7→ R is a symmetric functional.

Proof. The result follows of from Theorem 3 and Propositions 1 and 2 in Basu and

Mukherjee [4].

We now present the first result of this paper which investigates families of mechanisms

that satisfy AN, AS, NBD and NE.

Proposition 1. Fix any family F ∈ Āc ∩ Ār. For any m, if the mechanism Fm satisfies

AN, AS, NBD, NE and SP, then there exists an r ≥ 0 such that for all i ∈ N and all

v−i ∈ Rn−1
+ ,

(A) If v−i(m) ≥ r, then Km(v−i) = f(v−i(m)) where f() : [r,∞) 7→ R is a continuous

non-decreasing functional such that for all x, x′ ≥ r,

f(x)− f(x′)

x− x′ ≤ 1.16

(B) If v−i(m) < r, then Km(v−i) = Cm where Cm is an arbitrary real constant.

Proof. Fix any family F ∈ Āc ∩ Ār, any m ∈ N, and consider the mechanism Fm :=

(dm, τm). Suppose that Fm satisfies AN, AS, NBD, NE and SP. We prove each of the

statements below.

Proof of (A): From Fact 2 it follows that ∃ r ≥ 0 such that ∀ z ∈ Rn−1
+ , Tm(z) =

max{z(m), r}. Since both Km(.) and Tm(.) functions are symmetric (as reported in Fact

2), our proof can be accomplished by proving statements (A) and (B) to be true for all

z ∈ {z′ ∈ Rn−1
+ : z′(t) = z′t,∀ t = 1, . . . , n − 1}. So, fix an arbitrary z ∈ Rn−1

+ such that

z1 ≥ z2 ≥ . . . ≥ zn−1, and zm ≥ r. Observe that to establish Km(z) = f(zm) (that is,

the image of Km(.) at point z depends only on the mth coordinate), we need to show

that: (i) for all k = 1, . . . ,m − 1, Km(xk, z−k) = Km(z),∀ xk ≥ zm and (ii) for all

k = m+ 1, . . . , n− 1, Km(xk, z−k) = Km(z),∀ xk < zm.

Suppose that (i) does not hold. That is, there exists a k ∈ {1, . . . ,m−1} and an x′
k > zm

such that Km(x′
k, z−k) ̸= Km(z). Consider the profile v such that v1 = x′

k and v−1 = z.

Therefore, for all t = 1, . . . , n− 1, vt+1 = zt and so, by Fact 2, d1(v) = dk+1(v) = 1. Now,

it is well known that in a quasilinear setting, NE implies that any two agents receiving the

16That is, f is Lipschitz of degree 1.
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same decision also get the same transfer, and so, τ1(v) = τk+1(v).
17 But this implies that

−zm + Km(z) = −zm + Km(x′
k, z−k) and hence, we get a contradiction. Now, suppose

that (ii) does not hold. That is, there exists a k ∈ {m + 1, . . . , n − 1} and an x′′
k < zm

such that Km(x′′
k, z−k) ̸= Km(z). As before, construct a profile w such that w1 = x′′

k and

w−1 = z. Then, by Fact 2, the top m bidders {2, 3, . . . ,m + 1} win an object each, and

so, d1(w) = dk+1(w) = 0, which by NE, implies that τ1(w) = τk+1(w) =⇒ Km(z) =

Km(x′′
k, z−k). Hence, we again get a contradiction.

Thus, we can infer that for any v ∈ RN
+ , Km(v) = f(v−i(m)). Now, consider any

profile v̄ such that v̄k = v̄(k) for all k = 1, . . . , n and v̄m+1 ≥ r. By Fact 2, dm(v̄) =

1, dm+1(v̄) = 0. Applying the notion of NE for the pair of agents m and m + 1, we get

that 0 ≤ Km(v̄−(m+1)) − Km(v̄−m) ≤ v̄m − v̄m+1. From the discussion above, it follows

that 0 ≤ f(v̄m) − f(v̄m+1) ≤ v̄m − v̄m+1. Since, the profile v̄ was arbitrarily chosen, we

have established that for all x ≥ y ≥ r, f(x) ≥ f(y). That is f(.) is a non-decreasing

function with a slope less than 1 over the interval [r,∞). Further, we can see that f(.) is

Lipschitz of degree 1, and so, it follows that f(.) is continuous.

Proof of (B): As before, note that Fact 2 implies that ∃ r ≥ 0 such that ∀ z ∈ Rn−1
+ ,

Tm(z) = max{z(m), r}. Define for any z ∈ Rn−1
+ , kz := |{zi : zi ≥ r}| to be the

number of coordinates of z weakly greater than r. Also define for all t = 0, . . . , n − 1,

St := {z ∈ Rn−1
+ : kz = t} to the set of vectors in Rn−1

+ which have exactly t coordinates

that are weakly greater than r. Therefore, the set of all z ∈ Rn−1
+ such that z(m) < r is

S∗ := ∪t=m−1
t=0 St. In the following three steps, we show that for all z ∈ S∗, Km(z) = Cm

where Cm is an arbitrary real constant.

STEP 1: For all z ∈ S0, Km(z) = Cm where Cm is an arbitrary real constant.

Proof of Step: Suppose there exists z, z′ ∈ S0 such that Km(z) ̸= Km(z′). Construct

a sequence of profiles {tv}n−1
t=1 such that 1v1 = z′1,

1v−1 = z, and for all 2 ≤ t ≤ n − 1,
tvt = z′t with tv−t =t−1 v−t. Since for all t, tv ∈ [0, r)n, by Fact 2, di(

tv) = 0 for all

i ∈ N . Since no agent wins an object at any member of sequence {tv}, by NE, we get

that for all i ̸= j ∈ N , τi(
tv) = τj(

tv) =⇒ Km(tv−i) = Km(tv−j) for all t. Therefore,

Km(1v−1) = Km(2v−2) = . . . = Km(n−1v−{n−1}). Since, by definition, 1v−1 = z and
n−1v−{n−1} = z′, we get Km(z) = Km(z′), which contradicts our supposition.

STEP 2: For any t = 1, . . . ,m − 1 and any z ∈ St, Km(z) = Cmt where Cmt is an

arbitrary real constant.

Proof of Step: Fix a t = 1 . . . ,m − 1 and consider any z ∈ St. As before, without loss

of generality, suppose that zk = z(k),∀ k = 1, . . . , n − 1. We first prove that (i) for all

k = 1, . . . , t, all xk > zk, K
m(xk, z−k) = Km(z); and (ii) for all k = t + 1, . . . , n − 1,

all xk < zk, K
m(xk, z−k) = Km(z). Suppose that (i) is not true. Then there exists a

17Note that for any profile v and any i ̸= j ∈ N , NE implies that vi(di(v) − dj(v)) ≥ τj(v) − τi(v) ≥
vj(di(v)− dj(v)), and so, di(v) = dj(v) =⇒ τi(v) = τj(v).
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k ∈ {1, . . . , t} and an x′
k > zk such thatKm(x′

k, z−k) ̸= Km(z). Consider the profile v such

that v1 = x′
k, v2 = zk and v−1−2 = z−k. Note that by construction, zk ≥ r. If zk > r then

by Fact 2, d1(v) = d2(v) = 1, and so, from NE it follows that τ1(v) = τ2(v), which implies

Km(z) = Km(xk, z−k) that contradicts our supposition. On the other hand, if zk = r,

then by Fact 2 and our tie-breaking rule, d1(v) = d2(v) = 1 and so, as before, from NE we

get that Km(xk, z−k) = Km(z). Similarly, suppose that (ii) is not true and so, there exists

l ∈ {t+1, . . . , n−1} and an x′
l < zl such that Km(x′

l, z−l) ̸= Km(z). As before, construct

a profile v′ such that v′1 = x′
l, v

′
2 = zl and v′−1−2 = z−l. By Fact 2, di(v

′) = d2(v
′) = 0,

and so, by NE, it follows that τ1(v
′) = τ2(v

′) =⇒ Km(z) = Km(x′
l, z−l), which is a

contradiction. Hence, the result follows.

STEP 3: For all t = 1, . . . ,m− 1, Cmt = Cm.

Proof of Step: We accomplish this proof by induction. We first show that Cm1 = Cm.

To see this, consider any profile v such that v1 ≥ r > v2 ≥ . . . ≥ vn. Therefore,

v−1 ∈ S0 and for all j ̸= 1, v−j ∈ S1. Therefore, by the earlier steps, Km(v−1) = Cm

and Km(v−j) = Cm1 for all j ̸= 1. Further, by Fact 2, d1(v) = 1, d2(v) = 0. Therefore,

NE implies that v2 − r ≤ Cm1 − Cm ≤ v1 − r. Since v1 and v2 could have been chosen

arbitrarily close to r satisfying v1 > r > v2, it must be that Cm1 = Cm. Now, suppose that

Cmt = Cm for some t such that 0 ≤ t ≤ m − 2. We shall then show that Cmt+1 = Cm.

To see this, consider the profile v such that v1 ≥ . . . ≥ vt+1 > r > vt+2 ≥ . . . ≥ vn.

By the earlier steps, v−{t+1} ∈ St =⇒ Km(v−{t+1}) = Cmt = Cm and v−{t+2} ∈
St+1 =⇒ Km(v−{t+2}) = Cmt+1. Also, by Fact 2, dt+1(v) = 1, dt+2(v) = 0. Then, by

NE, vt+2 − r ≤ Cmt+1 − Cm ≤ vt+1 − r. Since, vt+1 and vt+2 can be chosen arbitrarily

close to r satisfying vt+2 < r < vt+1, it must be that Cmt = Cm.

Now, we present the second result of this paper which investigates strategyproof and

feasible mechanisms that satisfy AN, AS, NBD and IR.

Proposition 2. Fix any family F ∈ Āc ∩ Ār. For any m ∈ N, if the mechanism Fm

satisfies AN, AS, feasibility, IR, NBD, NE and SP, then then there exists r ≥ 0 such that

for all i ∈ N and all v−i ∈ Rn−1
+ ,

(A) When r > 0; Km(v−i) = 0 if v−i(m) < r, or else Km(v−i) = f(v−i(m)) where where

f(.) : [r,∞) 7→
[
0, mr

n−m

]
is a non-decreasing 1-Lipschitz continuous function.

(B) When r = 0; Km(v−i) = 0.

(C) For any r ≥ 0, Km(.) is continuous.

Proof: Fix any family F ∈ Āc∩Ār, any m, and consider the mechanism Fm := (dm, τm).

Suppose that Fm satisfies AN, AS, feasibility, IR, NBD, NE and SP. As noted earlier,
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Fact 2 implies that ∃ r ≥ 0 such that ∀ z ∈ Rn−1
+ , Tm(z) = max{z(m), r}. Now, we prove

each of the statements below.

Proof of (A): Suppose r > 0. Given Proposition 1, to establish this statement, we need

to show that IR and feasibility imply the following two restrictions on the mechanisms

characterized by Proposition 1: (i) Cm = 0 and (ii) f(x) ∈
[
0, mr

n−m

]
for all x ≥ r > 0. To

establish (i) consider a profile v ∈ [0, r)n. Fact 2 implies that dmi (v) = 0,∀ i and so, by

Proposition 1, u(dmi (v), τ
m
i (v); vi) = Km(v−i) = Cm for all i ∈ N . Therefore, IR implies

that Cm ≥ 0, while feasibility implies that nCm ≤ 0. Thus, we get that Cm = 0. To

prove (ii), fix any x ≥ r and consider the profile vx such that vx1 ≥ . . . ≥ vxm = x ≥ r >

vxm+1 ≥ . . . ≥ vxn. Proposition 1 and the property (i) proved above, imply that for all

i ∈ {1, . . . ,m}, Km(vx−i) = 0 and for all i ∈ {m+1, . . . , n}, Km(vx−i) = f(x). Further, by

Fact 2 and IR, for all i ∈ {m + 1, . . . , n}, u(dmi (vx), τmi (vx); vxi ) = Km(vx−i) = f(x) ≥ 0.

On the other hand, feasibility implies that (n−m)f(x)+m(0−r) ≤ 0 =⇒ f(x) ≤ mr
n−m

.

Since x ≥ r was chosen arbitrarily, by Proposition 1, the result follows.

Proof of (B): Suppose r = 0. Then by Proposition 1, for all v ∈ RN
+ and all i ∈ N ,

Km(v−i) = f(v−i(m)). Suppose there exists y > 0 such that f(y) > 0. Consider profile

v where vk = v(k) for all k = 1 . . . , n, vm = y and vm+1 = ϵ ∈
(
0,min

{
y, (n−m)f(y)

m

})
.

Therefore, by Fact 2, dmi (v) = 1 for all i = 1, . . . ,m and dmi (v) = 0 for all i = m+1, . . . , n.

Further, by Proposition 1 and Fact 2, τmi (v) = Km(v−i) − Tm(v−i) = f(ϵ) − ϵ for all

i ∈ {1, . . . ,m}, and τmi (v) = Km(v−i) = f(y) for all i ∈ {m + 1, . . . , n}. Now, r = 0

implies that um+1(d
m
m+1(ϵ̄

n), τmm+1(ϵ̄
n); ϵ) = f(ϵ), and so, by IR, f(ϵ) ≥ 0. But then, by

the particular construction of ϵ, the sum of transfers at profile v becomes positive, which

contradicts feasibility. Further, it follows trivially from IR and feasibility that f(0) = 0

when r = 0.18 Therefore, we get that whenever r = 0, f(y) = 0,∀ y ≥ 0. Thus, the result

follows.

Proof of (C): Note that this result follows trivially when r = 0. When r > 0, given

Proposition 1, to prove this statement we need to establish that f(r) = 0. Suppose

not; that is, suppose that f(r) > 0. By continuity, there exists a γ > 0 such that for

all δ ∈ (0, γ), f(r + δ) > 0. Further, there exists a δ′ ∈ (0, γ) such that 0 < δ′ <

f(r + δ′) (or else for all δ ∈ (0, γ), 0 < f(r + δ) ≤ δ implying that f(r) = 0 which

would be a contradiction). Now, consider a profile v such that for all k = 1, . . . , n,

vk = v(k), vm = r + δ′ and vm+1 < r. Note that by statement (A), Km(v−m) = 0

since v−m(m) = vm+1 < r. Further, by Fact 2, dm(v) = 1 and dm+1(v) = 0, and so,

u(dm(v), τm(v); vm) = δ′ < f(r + δ′) = Km(v−{m+1}) = u(dm+1(v), τm+1(v); vm+1), which

contradicts NE. Hence, the result follows.

Now, we proceed to the main result of our paper, which is the characterization of

18By considering the profile 0̄n.
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the multiple object version of the maxmed mechanisms introduced by Sprumont [23]

for a single object setting. We first define the notion of Pareto dominance in a class

of mechanisms. For any given supply of objects m, and any set of mechanisms Sm,

define a weak partial order ⪰ on Sm in the following manner. For any two mechanisms

(dm, τm), (d′m, τ ′m) ∈ Sm, let (dm, τm) ⪰ (d′m, τ ′m) iff for all i ∈ N and all v ∈ RN
+ ,

u(dmi (v), τ
m
i (v); vi) ≥ u(d′mi (v), τ ′mi (v); vi). If in addition, this inequality is strict for some

i and some v, then we write that (dm, τm) ≻ (d′m, τ ′m) and say that (dm, τm) Pareto

dominates (d′m, τ ′m). On the other hand, if u(dmi (v), τ
m
i (v); vi) = u(d′mi (v), τ ′mi (v); vi) for

all i and all v, then we write that (dm, τm) ∼ (d′m, τ ′m) and say that (dm, τm) is Pareto

equivalent to (d′m, τ ′m). Finally, we call the class of mechanisms in Sm that are not

dominated by any other mechanism in Sm, as the set of Pareto optimal mechanisms in

Sm.

Now, we define our notion of Pareto optimal families of mechanisms. For any given

set of families F , define a weak partial order ‘ r ’ over F , where for any F,G ∈ F , F r G

iff Fm ⪰ Gm for all m. If in addition, there exists an m′ such the Fm′ ≻ Gm′
, then we

write that F s G and say that F Pareto dominates G. Also, if Fm ∼ Gm for all m, we

write F e G and say that F is Pareto equivalent to G. Thus, we call the set of families

in F that are Pareto undominated by any other family in F , as the set of Pareto optimal

families in F .

Now, consider the set of families Ã ⊆ Āc ∩ Ār such that for any F ∈ Ã and any m,

the mechanism Fm satisfies AN, feasibility, IR, NBD, NE and SP. Let A∗ be the set of

Pareto optimal families in Ã. We first show below that all families in A∗ must comprise

of mechanisms that satisfy AS, and then use this result to establish that A∗ is same as

the set of maxmed sales procedures M.19

Claim 1. For any family F ∈ A∗, and any m, the mechanism Fm := (dm, τm) satisfies

AS.

Proof: Fix any F ∈ A∗, and suppose that there exists an m̂ such that F m̂ = (dm̂, τ m̂)

does not satisfy AS. LetKm̂(.) and T m̂(.) be the functions associated with F m̂ as described

in Fact 1. By our supposition, there must exist a z ∈ Rn−1
+ such that either T m̂(z) = ∞

or else T m̂(z) < 0. Now if T m̂(z) < 0, then at any profile v where v1 = 0 and v−1 = z,

by Fact 1, dm̂1 (v) = 1, and so, by NE (that is, the inequalities presented in footnote 17),

dm̂i (v) = 1 for all i ̸= 1, which is a contradiction since supply of objects is always less

than total demand (see footnote 8).

So, the only remaining possibility is that T m̂(z) = ∞. Now, fix any i, and any profiles v,

v′ such that v′−i = v−i = z, and v′i > maxt=1,...,n−1 zt. By Fact 1, dm̂i (v) = dm̂i (v
′) = 0, and

so, by NBD, dm̂j (v) = dm̂j (v
′) for all j ̸= i. As argued above, by NE, dm̂j (v

′) = 0 implies

19See Definition 3.
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that for all j ̸= i, dm̂j (v
′) = 0, which then implies that dm̂j (v) = 0,∀ j ̸= i. Since, i and vi

were chosen arbitrarily, we get that for any v,

∃ i ∋ v−i = z =⇒ dm̂j (v) = 0,∀ j.

Further, since F ∈ Ār, we can infer that for any v,

∃ i ∋ v−i = z =⇒ dmj (v) = 0,∀ j,∀m.

Now construct a family of mechanisms F̄ such that for any m, the mechanism F̄m :=

(d̄m, τ̄m) is defined such that (dm(v), τm(v)) = (d̄m(v), τ̄m(v)) for all v satisfying the

property v−j ̸= z, ∀ j; or else,

� for any i, d̄mi (v) =

{
1 if vi > z(m)

0 if vi < z(m),

� for any i, τ̄mi (v) =

{
Km(v) + z(m)

n
− z(m) if d̄m(v) = 1

Km(v) + z(m)
n

if d̄m(v) = 0.

It is easy to see that for any m, F̄m ≻ Fm since for all v,

∄ j ∋ v−j ̸= z =⇒ ui(d
m(v), τm(v); vi) = ui(d̄

m(v), τ̄m(v); vi),∀ i,

∃ j ∋ v−j ̸= z =⇒ ui(d
m(v), τm(v); vi) < ui(d̄

m(v), τ̄m(v); vi),∀ i.

Therefore, by construction, F̄ s F . Now, it is easy to see that F̄ ∈ Ār ∩ Āc. Further,

we can easily check that for any m, the mechanism F̄m satisfies feasibility, IR, NE, NBD

and SP, since Fm too satisfies all these properties. Thus, F̄ ∈ Ã, which contradicts

F ∈ A∗.

Thus, as shown in Claim 1 above, we get AS for free from the set of other axioms. This

brings us to main result of the paper below, which shows that maxmed sales procedures

are the only families that are Pareto optimal in Ã.

Theorem 1. M = A∗.

Proof. We prove the necessity and the sufficiency components of this result separately

below.

Necessity. Fix any family F ∈ A∗, any m and consider the mechanism Fm := (dm, τm).

Suppose that Fm satisfies AN, feasibility, IR, NBD, NE and SP. Let Km(.) and Tm(.) be

the functions associated with Fm as described by Fact 2. From Claim 1, Facts 1 and 2,

it follows that ∃ r ≥ 0 such that ∀m and ∀ z ∈ Rn−1
+ , Tm(z) = max{z(m), r}. Further,

Propositions 1 and 2 imply that (i) v−i(m) ≤ r =⇒ Km(v−i) = 0, ∀i, ∀v. Now suppose

that there exists z ∈ Rn−1
+ with z(m) ∈

(
r, nr

n−m

)
and Km(z) < z(m) − r. Then, define
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the set Pz := {v ∈ RN
+ |∃ i ∈ N such that v−i = z}, and for all v ∈ Pz, define the set

avz := {i ∈ N |v−i = z}. Therefore, by Fact 1, Pz is the set of all possible profiles v such

that all agents i in avz are assigned the following transfer by mechanism Fm,

τmi (v) =

{
Km(z) if dmi (v) = 0

Km(z)−max{z(m), r} otherwise.

Now, construct another family F ′′ such that F ′′k = F k for all k ̸= m, and F ′′m :=

(d′′m, τ ′′m) satisfies the following properties:

� (d′′mi(v), τ
′′m

i(v)) = (dmi (v), τ
m
i (v)) for all i ∈ N and all v ∈ RN

+ \ Pz,

� d′′mmi(v) = dmi(v) for all i ∈ N and all v ∈ Pz,

� τ
′′m
i (v) = τmi (v) for all i /∈ avz, and all v ∈ Pz,

� for all v ∈ Pz and all i ∈ avz,

τ ′′mi(v) =

{
z(m)− r if d′′mi(v) = 0

z(m)− r −max{z(m), r} otherwise.

Since by supposition, Km(z) < z(m) − r, it can easily be seen that (d′′m, τ ′′m) Pareto

dominates (dm, τm), and so, we can infer that F ′′ s F . Further, it is easy to check

that F ∈ Ã =⇒ F ′′ ∈ Ã. Thus, we get a contradiction to F ∈ A∗. Therefore,

Km(z) = z(m)− r for all z ∈ Rn−1
+ with z(m) ∈

(
r, nr

n−m

)
.

Similarly, by Proposition 2, we can argue that for all z ∈ Rn−1
+ with z(m) ≥ nr

n−m
,

0 ≤ Km(z) ≤ mr
n−m

. If there exists a z′ such that Km(z′) < mr
n−m

, then as argued above, we

can show that F is Pareto dominated by another suitably constructed family in Ã, which

would be a contradiction to F ∈ A∗. Hence, for any z ∈ Rn−1
+ , Km(z) = mr

n−m
whenever

z(m) > nr
n−m

, or equivalently, z(m)−r > mr
n−m

. By the continuity ofKm(.) function proved

in Proposition 2, it now follows that for any z ∈ Rn
+, K

m(z) = med{0, z(m) − r, mr
n−m

},
and so, F ∈ M.

Sufficiency: Fix any r ≥ 0, any family FM,r, any m ∈ N, and consider the maxmed

mechanism Fm
M,r := (dm,r, τm,r). Note that, for any profile v such that v−i(m) ≤ r; for

any i ∈ N , τm,r
i (v) = 0 if dm,r

i (v) = 0 or else τm,r
i (v) = −r. Similarly, for any profile

v such that v−i(m) ∈
(
r, nr

n−m

)
; for any i ∈ N , τm,r

i (v) = v−i(m) − r if dm,r
i (v) = 0 or

else τm,r
i (v) = −r. Finally, for any profile v such that v−i(m) ≥ nr

n−m
; for all i ∈ N ,

τm,r
i (v) = mr

n−m
if dm,r

i (v) = 0 or else τm,r
i (v) = mr

n−m
− v−i(m). Thus, it can easily be seen

that for a given threshold function Tm(v) = max{v−i(m), r},∀v, all agents with the same

allotment decision receive the same transfer at all profiles. Also, for any agents i ̸= j,

and any v with di(v) = 1, dj(v) = 0, we get that vi ≥ τm,r
j (v) − τm,r

i (v) ≥ vj in all the
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above cases. Thus, we can infer that (dm,r, τm,r) satisfies feasibility, NE and IR. Further,

it is easy to see that (dm,r, τm,r) satisfies NBD, and SP. To see that (dm,r, τm,r) satisfies

continuity, note that the premise of the continuity condition applies only if the limit profile

ṽ (of the chosen sequence) is such that there exists an i such that ṽi = max{ṽ−i(m), r},
in which case u((1, τi(ṽ; di = 1); ṽi) = u((0, τi(ṽ; di = 0); ṽi) = med

{
0, v−i(m)− r, mr

n−m

}
.

Finally, it is easy to see that FM,r ∈ Ār, because the set of profiles where no object gets

allocated is [0, r)n, which remains unchanged as m increases.

To complete the proof of sufficiency, we now need to show that FM,r is Pareto undominated

in Ã. To prove this, suppose the contrapositive, that is, suppose that there exists a family

of mechanisms F̂ ∈ Ã such that F̂ s FM,r. This supposition implies that there exists

an m′ such that F̂m′
:= (d̂m

′
, τ̂m

′
) ≻ Fm′

M,r = (dm
′,r, τm

′,r). Now, since F̂ ∈ Ã, we

can infer from Proposition 2 that there exists an r̂ ≥ 0 such that for all i and all v,

the associated threshold function T̂m′
(v−i) = max{v−i(m

′), r̂} and the associated K̂m′

function satisfy the conditions (A), (B), and (C) of Proposition 2. Now, from the proof

of necessity we can infer that for any k objects, F k
M,r̂ is either Pareto equivalent to F̂ k or

else Pareto dominates F̂ k. Therefore, we can infer that FM,r̂ r F̂ , and so, by supposition,

FM,r̂ s FM,r. This implies that r̂ ̸= r. If r̂ > r, then fix m = 2 and consider a profile

v̄ such that v̄1 > . . . > v̄n and for all i, v̄i ∈
(
r,min

{
nr

n−m
, r̂
})

. It is easy to see that

u(F 2
M,r(v̄); v̄n) = vm − r > u(F 2

M,r̂(v̄); v̄n) = 0, which contradicts FM,r̂ s FM,r. Similarly,

if r̂ < r, then again fix m = 2 and consider a profile ṽ such that for all i, ṽi =
nr

n−m
+ 1.

Once again we get that u(F 2
M,r(v̄); v̄n) =

mr
n−m

> u(F 2
M,r̂(v̄); v̄n) =

mr̂
n−m

, which contradicts

FM,r̂ s FM,r. Thus, we get a contradiction in both cases, which implies that FM,r is Pareto

undominated in Ã, and so, FM,r ∈ A∗.

Now, it is easy to see that no individually rational mechanism can be Pareto dominated

by another mechanism that does not satisfy individual rationality. Hence, we can easily

infer that within the class of families Â ⊂ Āc∩Āc that comprise of mechanisms satisfying

AN, feasibility, NBD, NE and SP; the set of maxmed families M is Pareto optimal - but

not uniquely Pareto optimal.

5 Conclusion

In this paper, we provide an extension of maxmed mechanisms to the multiple homo-

geneous objects setting. We conduct our analysis in terms of families of mechanisms

which we interpret as ex-ante sale procedures that list a separate mechanism to be used

to allocate different possible supplies of the homogeneous objects.

We consider a regular class of families of continuous mechanisms that satisfy anonymity,

feasibility, individual rationality, no-envy, non-bossiness in decision and strategyproof-

ness. We show that the maxmed sale procedures, that is, the families which use maxmed
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mechanisms to allocate any supply of objects while using the same reserve price - are the

only Pareto undominated families in the aforesaid class.
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