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Abstract

In Data Envelopment Analysis (DEA), one way of calculating efficiency is to use parameter weights
common to all decision-making units (DMUs), since it is reasonable for similar DMUs to place similar
weights on inputs and outputs. At the same time, in many situations, the total amount of input or
output available to a set of DMUs is fixed. In this paper, we have formulated DEA models to calculate
the best strategy for improving the efficiency of an inefficient DMU when the parameters of all DMUs
are weighted with a common set of weights, and there is a constant sum of inputs/outputs constraint.
Theoretical results have been illustrated with the help of a numerical example.

Keywords: DEA, efficiency, linear programming, common weights, constant sum of inputs, constant
sum of outputs

1 Introduction

Data Envelopment Analysis (DEA) is a widely applied non-parametric mathematical programming
technique to calculate the relative efficiency of firms/organizations or Decision Making Units (DMUs)
operating in a similar environment and utilizing multiple inputs to produce multiple outputs. Based
on Farrell’s (1957) work on productive efficiency, DEA was first introduced by Charnes, Cooper, and
Rhodes (1978). Efficiency obtained using DEA, in its simplest form, is the comparison of the weighted
output to weighted input ratio of the observing DMU with that of the best practice in the group.
DEA has an advantage over other methods since the inputs/output weights are determined by the
DEA model itself, and thus the decision maker does not face the problem of determining the weights
beforehand. Measurement of efficiency is important to shareholders, managers, and investors for any
future course of action. DEA has been extensively applied to a wide spectrum of practical problems.
Examples include financial institutions (Sherman and Ladino 1995), bank failure prediction (Barr et.
al. 1994), electric utilities evaluation (Goto and Tsutsui 1998), textile industry performance (Chandra
et. al. 1998), sports (Singh and Adhikari, 2015; Singh 2011; Ruiz et al. 2013), portfolio evaluation
(Murthi et. al. 1997). DEA analysis makes allowance for DMUs which are under constant returns to
scale (CRS) using the Charnes-Cooper-Rhodes (CCR) models (1978) as well as for variable returns to
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scale (VRS) models such as the Banker-Charnes-Cooper (BCC) models (Banker et al. 1984).

A DMU can improve its efficiency by reducing its input or increasing its output or doing both. How-
ever, when a DMU attempts to increase output, it may turn out that there is only a limited amount
of output that can be produced in the system by all DMUs, such as the Olympic Games where only
a limited number of medals are available to the competing teams (Lins et. al. 2003), or competition
for market share (Hu and Fang 2010). This limitation on output is called Constant Sum of Outputs
(CSOO). Yang et. al. (2011) established models for improving the efficiency of a DMU under CSOO,
but these models all operated under the assumption that the various inputs and outputs of a DMU were
freely substitutable, and that the weights of one DMU were independent of the weights for other DMUs.

Similarly, if the amount of input in the system is constant, a DMU can only reduce its input if the
input of another DMU is increased. Examples of constant sum of input (CSOI) problems include the
distribution of a fixed cost (Cook and Kress 1999) or the allocation of office space (Gomes et al. 2008).
Almost all approaches to the CSOI problem such as those developed by Beasley (2003) or later methods
like the ellipsoidal frontier model (Milioni et al. 2011), treat the CSOI as a fixed cost problem. Lotfi
et al. (2013) deals with resource allocation under common weights, but it also treats the problem as
a fixed cost allocation. None of them consider the problem of a single DMU attempting to improve
its efficiency, instead looking at all DMUs simultaneously. Furthermore, no paper exists that combines
CSOI and CSOO constraints in a single problem.

The survey of existing works in CSOO and CSOI indicate that there are few papers that take into
account the Common Weights restriction, and none of these addresses both CSOO and CSOI prob-
lems simultaneously. Common Weights (CW) is a very common form of weight restriction in DEA. If
the DMUs are operating in a similar environment, they can be expected to have the same parameter
weights (Lotfi et al. 2013). The CW approach is also used when classic DEA models do not give
us accurate information as to the real weights of the input and output parameters, or to differentiate
between efficient DMUs (Liu and Peng 2008). Several approaches exist for solving CW efficiency (Roll
and Golany 1993, Cook and Zhu 2007). In this paper, we have addressed the problem of efficiency
improvement under CSOI and CSOO constraints when a set of common weights is applied to input
and output parameters of all DMUs. This is useful in real-life situations where the overall efficiency
of the system is more important than individual DMU’s efficiency (Beasley 2003), and there are limits
to total productivity and/or a fixed input quantity. It is also useful in situations where all DMUs are
expected to place similar weights on the various parameters.

This paper is organized as follows. In section 2, DEA models and theoretical results have been de-
veloped. Numerical illustration of the theoretical results developed in this paper is given in section 3.
Conclusion and future direction for research have been presented in section 4.

2 Model formulation and theoretical results

The following notations have been used throughout this paper. Other notations used in certain sections
will be defined at appropriate places.

n : The number of DMUs.
m : The number of inputs.
s : The number of outputs.
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xij : Observed amount of jth input for the ith DMU (i = 1, . . . , n; j = 1, . . . ,m).
yir : Observed amount of rth output for the ith DMU(i = 1, . . . , n; r = 1, . . . , s).

θCW
k : Efficiency of the kth DMU under common weights (CW).
ur : The weight assigned to the rth output(r = 1, . . . , s).
vj : The weight assigned to the jth input(j = 1, . . . ,m).
u0 : Value representing the variable part of variable returns to scale DEA models.
∆I

i : Virtual gap between the weighted inputs of the ith(i = 1, . . . , n) DMU and
best-practices frontier.

∆O
i : Virtual gap between the weighted outputs of the ith(i = 1, . . . , n) DMU and

best-practices frontier.
gkr : The output increase in the rth(r = 1, . . . , s) output of the kth DMU.
tir : The output reduction in the rth(r = 1, . . . , s) output of the ith(i = 1, . . . , n; i 6= k) DMU.
fkj : The input decrease in the jth(j = 1, . . . ,m) input of the kth DMU.
sij : The input increase in the jth(j = 1, . . . ,m) input of the ith(i = 1, . . . , n; i 6= k) DMU.

ε : An infinitesimally small positive value.

Several methods exist for ranking DMUs’ efficiency under common weights (Roll and Golany 1993,
Cook and Zhu 2007, Liu and Peng 2008, Lotfi et al. 2013). Under the CW limitation, since the weights
are same across all DMUs, the objective is to select weights such that the overall efficiency of all DMUs
is maximized. Later papers use a Goal Programming (Tamiz et al. 1998) approach to convert the
problem into a solvable linear programming problem. In the approach used by Lotfi et al. (2013), in
order to maximize the overall efficiency, the total virtual gap is to be minimized. The virtual output
gap ∆O

i is defined as the gap between the ideal weighted sum of outputs on the efficiency frontier, and
the real weighted sum of outputs. The virtual input gap ∆I

i is the gap between the ideal weighted sum
of inputs and the real weighted sum of inputs. Thus, if y∗ir(r = 1, . . . , s) and x∗

ij(j = 1, . . . ,m) are the
ideal outputs and inputs on the efficiency frontier for the ith DMU, then

∆O
i =

s∑
r=1

ury
∗
ir −

s∑
r=1

uryir,

∆I
i =

m∑
j=1

vjxij −
m∑

j=1

vjx
∗
ij,

∆O
i , ∆I

i ≥ 0,
s∑

r=1

ury
∗
ir

m∑
j=1

vjx
∗
ij

= 1.

Minimizing the total virtual gap across all DMUs means minimizing the value
n∑

i=1

(∆O
i + ∆I

i ). The
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model to achieve this minimization is shown below.

(M1) Min

n∑
i=1

(∆O
i + ∆I

i )

subject to
s∑

r=1

uryir + ∆O
i

m∑
j=1

vjxij −∆I
i

= 1, i = 1, . . . , n,

vj, ur, ∆
O
i , ∆I

i ≥ 0; i = 1, . . . , n; j = 1, . . . , m; r = 1, . . . , s.

Model (M1) is a nonlinear programming model. Lotfi et al. (2013) converted it to the following linear
programming (LP) model:

(M2) Min
n∑

i=1

(∆O
i + ∆I

i )

subject to
s∑

r=1

uryir −
m∑

j=1

vjxij + (∆O
i + ∆I

i ) = 1, i = 1, . . . , n,

vj, ur, ∆
O
i , ∆I

i ≥ 0; i = 1, . . . , n; j = 1, . . . , m; r = 1, . . . , s.

In model (M2), the higher the value of (∆O
i + ∆I

i ), the lower the efficiency of the ith DMU, and the ith

DMU is CW-efficient iff (∆O
i +∆I

i ) = 0. If u∗
r, v

∗
j , ∆

O∗
i , ∆I∗

i are the solutions to (M1) then the efficiency

ratio of any kth DMU can be calculated as θCW
k =

s∑
r=1

u∗
rykr

m∑
j=1

v∗j xkj

.

Without any loss of generality, it can be assumed that the first c input parameters are under CSOI
constraint. This means that the sum of all changes in these parameters must be 0. Thus, if the jth

input of the kth DMU i.e. xkj is decreased by a certain amount fkj then the value of the jth inputs of
the other DMUs will have to be increased. Let sij(i 6= k, i = 1, . . . , n) be the amount by which the jth

input of the ith(i 6= k) DMU is increased, then fkj =
n∑

i=1,i6=k

sij, fkj < xkj. Similarly, it can be assumed

that the first d output parameters are under CSOO constraint. If the rth output of the kth DMU i.e.
ykr is increased by a certain amount gkr then the value of the rth outputs of the other DMUs will have
to be decreased. Let tir(i 6= k, i = 1, . . . , n) be the amount by which the rth output of the ith(i 6= k)

DMU is decreased, then gkr =
n∑

i=1,i6=k

tir, tir < yir.

The objective is to minimize the virtual gap
n∑

i=1

(∆O
i + ∆I

i ) while making the kth DMU efficient. Since

the kth DMU is becoming efficient, ∆I
k, ∆

O
k = 0. Incorporating these changes into (M1), we get the

following model:
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(M3) Min
n∑

i=1,i6=k

(∆O
i + ∆I

i )

subject to
d∑

r=1

ur(ykr + gkr) +
s∑

r=d+1

urykr

c∑
j=1

vj(xkj − fkj) +
m∑

j=c+1

vjxkj

= 1,

d∑
r=1

ur(yir − tir) +
s∑

r=d+1

uryir + ∆O
i

c∑
j=1

vj(xij + sij) +
m∑

j=c+1

vjxij −∆I
i

= 1, i = 1, . . . , n; i 6= k,

gkr =
n∑

i=1,i6=k

tir,

fkj =
n∑

i=1,i6=k

sij,

tir ≤ yir − ε, r = 1, . . . , d, i = 1, . . . , n; i 6= k,

fkj ≤ xkj − ε, j = 1, . . . , c,

gkr, tir, fkj, sij, vj, ur, ∆
O
i , ∆I

i , ε ≥ 0; i = 1, . . . , n; j = 1, . . . , m; r = 1, . . . , s.

The solution for the model (M3) will give us the input decrease and/or output increase necessary in
kth DMU for the kth DMU to become efficient while maximizing the overall efficiency across all DMUs.

Theorem 1. The model (M3) will always have a feasible solution.

Proof. Let n be the number of DMUs. Apply (M2) to the data set, and let ∆O∗
i , ∆I∗

i (i = 1, . . . , n), u∗
r(r =

1, . . . , s), v∗j (j = 1, . . . ,m) be the solution to (M2). Select any positive values for fkj(fkj < xkj) and

gkr <
n∑

i=1,i6=k

yir such that

d∑
r=1

u∗
rgkr = ∆O∗

k (2.1)

c∑
j=1

v∗j fkj = ∆I∗
k (2.2)

Select any positive values for tir(tir < yir) and sij such that

gkr =
n∑

i=1,i6=k

tir(r = 1, . . . , d) (2.3)

fkj =
n∑

i=1,i6=k

sij(j = 1, . . . , c) (2.4)
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Now, define the values of ∆O
i and ∆I

i (i 6= k) as

∆O
i = ∆O∗

i +
d∑

r=1

u∗
rtir, (i = 1, . . . , n; i 6= k) (2.5)

∆I
i = ∆I∗

i +
c∑

j=1

v∗j sij, (i = 1, . . . , n; i 6= k) (2.6)

Since (M2) has been solved, and it is equivalent to (M1), all the constraints of (M1) are fulfilled by
its solution. Thus,

s∑
r=1

u∗
ryir + ∆O∗

i

m∑
j=1

v∗j xij −∆I∗
i

= 1, i = 1, . . . , n.

The above equation can be rewritten using eqns. (2.1)-(2.6) as

s∑
r=1

u∗
rykr +

d∑
r=1

u∗
rgkr

m∑
j=1

v∗j xkj −
c∑

j=1

v∗j fkj

= 1, (2.7)

s∑
r=1

u∗
ryir + ∆O

i −
d∑

r=1

u∗
rtir

m∑
j=1

v∗j xij −∆I
i +

c∑
j=1

v∗j sij

= 1, i = 1, . . . , n; i 6= k, (2.8)

fkj =
n∑

i=1,i6=k

sij, j = 1, . . . , c, (2.9)

gkr =
n∑

i=1,i6=k

tir, r = 1, . . . , d, (2.10)

0 ≤ tir ≤ yir − ε, r = 1, . . . , d; i = 1, . . . , n; i 6= k, (2.11)
0 ≤ fkj ≤ xkj − ε, j = 1, . . . , c; i = 1, . . . , n; i 6= k, (2.12)

The equations (2.7)-(2.12) are identical to the constraints of model (M3), and they all hold good as they
are equivalent to the constraints of (M1). Thus the values of u∗

r, v∗j , tir, sij, ∆O
i , ∆I

i as defined by (M2)
and eqns. (2.1)-(2.6) represent a feasible solution to model (M3). Hence the proof. ■

Let E∗ be the overall efficiency of all DMUs as calculated by (M2), and E be overall efficiency off
all DMUs using the model (M3).

Theorem 2. E ≥ E∗ for all solutions of (M3).

Proof.The values of u∗
r, v∗j , tir, sij, ∆O

i , ∆I
i as defined in Theorem 1, represent a feasible solution to
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model (M3). Thus, the objective function value of model (M3)

n∑
i=1,i6=k

(∆O
i + ∆I

i )

=
n∑

i=1,i6=k

(
∆O∗

i +
d∑

r=1

u∗
rtir + ∆I∗

i +
c∑

j=1

v∗j sij

)

=
n∑

i=1

(
∆O∗

i + ∆I∗
i

)
= Objective function value of model (M2).

Since the overall efficiency of all DMUs is inversely linked to the objective function value (the lower the
value the higher the overall efficiency), and there exists a feasible solution where the objective function
value of (M2) and (M3) is the same, this proves that there is at least a feasible solution of (M3) for which
E = E∗. Thus, since (M3) minimizes the objective function to maximize overall efficiency, E ≥ E∗ for
all solutions of (M3). ■

As the model (M3) is a non-linear fractional programming model, it can be converted into an equiv-
alent LP model by taking Φkr = urgkr, φir = urtir, Γkj = vjfkj, γij = vjsij and carrying out cross-

multiplication on the constraints. We also set
m∑

j=1

vjxkj = 1 to prevent the parameter weights from

reaching extreme values. The LP model (M4) is shown below.

(M4) Min
n∑

i=1,i6=k

(∆O
i + ∆I

i )

subject to
s∑

r=1

urykr −
m∑

j=1

vjxkj +
d∑

r=1

Φkr +
c∑

j=1

Γkj = 0,

s∑
r=1

uryir −
m∑

j=1

vjxij + ∆O
i + ∆I

i −
d∑

r=1

φir −
c∑

j=1

γkj = 0, i = 1, . . . , n; i 6= k,

m∑
j=1

vjxkj = 1,

Γkj =
n∑

i=1,i6=k

γij,

Φkr =
n∑

i=1,i6=k

φir,

Γkj ≤ vjxkj − ε, j = 1, . . . , c,

φir ≤ uryir − ε, r = 1, . . . , d; i = 1, . . . , n; i 6= k,

vj, ur, ∆
O
i , ∆I

i , Γkj, γij, Φkr, φir, ε ≥ 0; i = 1, . . . , n; j = 1, . . . , m; r = 1, . . . , s.

The variables ∆O
i , ∆I

i can be eliminated with the following steps:
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By the constraints of (M4),

∆O
i , ∆I

i ≥ 0,

which means

s∑
r=1

uryir −
m∑

j=1

vjxij + ∆O
i + ∆I

i −
d∑

r=1

φir −
c∑

j=1

γkj = 0, i = 1, . . . , n; i 6= k,

can be rewritten as

m∑
j=1

vjxij −
s∑

r=1

uryir +
d∑

r=1

φir +
c∑

j=1

γkj ≥ 0, i = 1, . . . , n; i 6= k. (2.13)

Also by the constraints of (M4), since

∆I
i + ∆O

i =
m∑

j=1

vjxij −
s∑

r=1

uryir +
d∑

r=1

φir +
c∑

j=1

γkj,

the objective function

Min
n∑

i=1,i6=k

(∆O
i + ∆I

i ),

can be rewritten as

Min
n∑

i=1,i6=k

(
m∑

j=1

vjxij −
s∑

r=1

uryir +
d∑

r=1

φir +
c∑

j=1

γkj

)
.

Also by (M4)

Γkj =
n∑

i=1,i6=k

γij, Φkr =
n∑

i=1,i6=k

φir, and
d∑

r=1

Φkr +
c∑

j=1

Γkj =
m∑

j=1

vjxkj −
s∑

r=1

urykr.

Thus, the new objective function is

Min

n∑
i=1

(
m∑

j=1

vjxkj −
s∑

r=1

urykr

)
. (2.14)

Incorporating Eqns. (2.13) and (2.14) into (M4), the model (M4) can be re-written as the following
equivalent LP model (M5). The new objective function is defined by equation (2.14), and equation
(2.13) gives us the second constraint of the following model (M5).
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(M5) Min

n∑
i=1

(
m∑

j=1

vjxij −
s∑

r=1

uryir

)
subject to
m∑

j=1

vjxkj −
s∑

r=1

urykr −
d∑

r=1

Φkr −
c∑

j=1

Γkj = 0,

m∑
j=1

vjxij −
s∑

r=1

uryir +
d∑

r=1

φir +
c∑

j=1

γij ≥ 0, i = 1, . . . , n; i 6= k,

m∑
j=1

vjxkj = 1,

Γkj =
n∑

i=1,i6=k

γij,

Φkr =
n∑

i=1,i6=k

φir,

Γkj ≤ vjxkj − ε, j = 1, . . . , c,

φir ≤ uryir − ε, r = 1, . . . , d; i = 1, . . . , n; i 6= k,

vj, ur, Γkj, γij, Φkr, φir, ε ≥ 0; i = 1, . . . , n; j = 1, . . . , m; r = 1, . . . , s.

Model (M5) is an LP model. By applying this model any kth DMU under common weights can improve
its efficiency by reducing inputs under CSOI, or increasing output under CSOO, or both. The model
is feasible since it is the linear form of model (M3), which has already been proved to be feasible.
However, model (M5) does not minimize the amount of input/output transfer. Let θCW∗

i (i = 1, . . . , n)
be the common-weight efficiency of all DMUs after the applying model (M5). We now design a model
to minimize the input/output transfer while ensuring that the efficiency of the DMUs does not reduce
any further. This LP model (M6) is as follows:

(M6) Min

d∑
r=1

Φkr +
c∑

j=1

Γkj

subject to
m∑

j=1

vjxkj −
s∑

r=1

urykr −
d∑

r=1

Φkr −
c∑

j=1

Γkj = 0,

θCW∗
i

(
m∑

j=1

vjxij +
c∑

j=1

γij

)
−

s∑
r=1

uryir +
d∑

r=1

φir ≤ 0, i = 1, . . . , n; i 6= k,

m∑
j=1

vjxij +
c∑

j=1

γij −
s∑

r=1

uryir +
d∑

r=1

φir ≥ 0, i = 1, . . . , n; i 6= k

m∑
j=1

vjxkj = 1,
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Γkj =
n∑

i=1,i6=k

γij,

Φkr =
n∑

i=1,i6=k

φir,

Γkj ≤ vjxkj − ε, j = 1, . . . , c,

φir ≤ uryir − ε; r = 1, . . . , d; i = 1, . . . , n; i 6= k,

vj, ur, Γkj, γij, Φkr, φir, ε ≥ 0; i = 1, . . . , n; j = 1, . . . , m; r = 1, . . . , s.

Applying model (M5), followed by model (M6), we can calculate the minimum necessary input/output
change that allows the observed DMU k to become efficient, without reducing overall efficiency in the
system.

3 Numerical Example

The example uses data for 14 hospitals, with the inputs being the number of doctors (Input 1), nurses
(Input 2) and the outputs being the number of outpatients (Output 1), inpatients (Output 2). The
data is obtained from the work of Cooper et al. (2007). In this example, we assume that the number
of doctors (Input 1) and inpatients (Output 2) are under the CSOI and CSOO constraint respectively,
and that the DMUs are under Common Weights (CW). These assumptions are made only as part of
the demonstration. The data for the DMUs, as well as the original efficiency score under CW, is shown
in the table below.

Table 1: Input, Output, and Common Weight Efficiency Data of 14 Hospitals

Hospital Input 1 Input 2 Output 1 Output 2 CW Efficiency
(DMU no.) Doctors Nurses Outpatients Inpatients θCW

i

1 3008 20980 97775 101225 0.759
2 3985 25643 135871 130580 0.799
3 4324 26978 133655 168473 0.980
4 3534 25361 46243 100407 0.623
5 8836 40796 176661 215616 0.821
6 5376 37562 182576 217615 0.911
7 4982 33088 98880 167278 0.794
8 4775 39122 136701 193393 0.781
9 8046 42958 225138 256575 0.933
10 8554 48955 257370 312877 1.000
11 6147 45514 165274 227099 0.786
12 8366 55140 203989 321623 0.916
13 13479 68037 174270 341743 0.783
14 21808 78302 322990 487539 0.957

Average Eff. 0.846

We choose DMU 4 for the target of efficiency improvement, since it has the lowest CW-efficiency. Setting
k = 4, we apply model (M5) to the data. The intermediate constant sum constraint input/output values
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resulting from (M5) are shown in table 2. Using the results of (M5), we apply model (M6) to the data.
The new values after the redistribution is shown in table 3. Table 3 shows that after the redistribution,
the overall efficiency of the system is better than before, even if individual efficiencies may be less, and
the observed DMU has efficiency of 1.

Table 2: Intermediate Input/Output Values Under Constant Sum Constraint.

DMU no. Intermediate Input 1 Intermediate Output 2 Intermediate eff.
1 3007.99 602.89 0.898
2 3985.00 3091.39 0.998
3 4980.34 168473.00 1.000
4 0.00 431609.48 1.000
5 8836.00 215616.00 0.821
6 5376.00 114524.11 1.000
7 4982.00 167278.00 0.671
8 4775.00 193393.00 0.811
9 8970.22 256574.56 1.000
10 10507.45 312876.56 1.000
11 6147.00 227099.00 0.817
12 8366.00 321623.00 0.820
13 13479.00 341743.00 0.538
14 21808.00 487539.00 0.724

Average eff. 0.864

Table 3: Final Results of Input/Output Redistribution After (M6)

DMU no. Old Input 1 Old Output 2 Old CW Eff. New Input 1 New Output 2 New eff.
1 3008 101225 0.759 3008.0 101225.0 0.941
2 3985 130580 0.799 3985.0 130580.0 0.998
3 4324 168473 0.980 4835.2 158890.1 1.000
4 3534 100407 0.623 979.1 135711.7 1.000
5 8836 215616 0.821 8836.0 215616.0 0.821
6 5376 217615 0.911 5760.7 203263.0 1.000
7 4982 167278 0.794 4982.0 167278.0 0.807
8 4775 193393 0.781 4775.0 193393.0 0.898
9 8046 256575 0.933 8046.0 250721.4 1.000
10 8554 312877 1.000 10213.1 307360.8 1.000
11 6147 227099 0.786 6147.0 227099.0 0.887
12 8366 321623 0.916 8366.0 321623.0 0.950
13 13479 341743 0.783 13479.0 341743.0 0.691
14 21808 487539 0.957 21808.0 487539.0 0.796

Average eff. 0.846 0.914

4 Conclusion

In this paper, we have developed DEA models to calculate a strategy for decreasing inputs or increasing
outputs until an inefficient DMU becomes efficient, when there is a constant sum of inputs/outputs,
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and the efficiency of all DMUs is measured using a common set of weights. While there exists work
on the common set of weights problem in DEA, and the constant sum of inputs/outputs problem,
this paper’s models address situation where both constraints are in operation. The problem is solved
with a two-step process using two LP models. The first model determines the necessary amount of
input/output change in the observed DMU which leads to it achieving efficiency. The second LP model
determines the minimum change in each parameter while ensuring that overall efficiency in the system
does not suffer. These models address a gap in existing literature, and can be applied in any situation
where a single DMU is seeking to improve efficiency when there is a limit on total input/output, and
parameter weights have a common value. It may be noted that while the observed DMU’s efficiency
and the overall efficiency has been improved, some individual DMUs may suffer efficiency reduction.
A future direction of research may be to improve the observed DMU and overall efficiency, without
reducing efficiency in any other DMU.
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